

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

14 October 2014

Our Reference: 14370:PJF1940/528

Cranbourne Road Holdings c/- Villawood Properties Level 1 6 Riverside Quay SOUTHBANK VIC 3006

Dear Sirs,

RE: LOT 528 OF THE PASADENA ESTATE (STAGE 5), CLYDE

Winslow Constructors Pty Ltd has recently constructed a residential subdivision (referred to as Stage 5 of The Pasadena Estate) which is located on the west side of Clyde – Five Ways Road in Clyde. As part of the subdivisional works, Civil Geotechnical Services were engaged by Winslow Constructors to provide inspection and testing services for the bulk earthworks associated with the construction of the residential allotments. The testing and inspection services were undertaken in accordance with the Level 1 requirements of AS 3798 – Guidelines on Earthworks for Commercial and Residential Developments.

Construction of the Lot noted above essentially involved a fill operation, with the estimated maximum depth of fill materials (excluding topsoil placement) being up to 1.1 metres in depth. However, there could be localised areas of slightly deeper fill materials arising from site stripping and foundation preparation works.

The fill materials were spread and compacted in 0.2 to 0.3 metre (solid) lifts using a vibrating pad foot roller and/or compactor. The fill materials essentially comprised clays that were sourced from adjacent stages of the Pasadena Estate. Compaction testing of these materials was performed at regular intervals (both vertically and laterally) during fill placement. The resulting density ratios were all in excess of 95% (standard compactive effort). A copy of the Level 1 report is attached.

The Cranbourne sheet of the Geological Survey Maps of Victoria shows the above site to be underlain by Tertiary aged deposits associated with the Baxter formation. These latter materials essentially comprise high plasticity clays that exhibit moderate to high shrink-swell surface movements when subjected to changes in seasonal soil moisture content. The anticipated geology and the foregoing description of the underlying materials were generally confirmed by site observations undertaken during construction of the subdivision (eg foundation preparation works, trench excavations etc).

As a consequence of the site earthworks, the founding medium for a conventional shallow footing system will most likely comprise the compacted fill materials. As the depth of the compacted clayey fill materials is in excess of 0.4 metres, a Class P classification in accordance with Section 2 of AS 2870 – Residential Slabs and Footings would normally be appropriate. However, as the fill materials that have been placed during the recent phase of construction have been placed in a controlled manner, a less severe classification would, in appropriate circumstances, be applicable.

After a consideration of the foregoing, together with the depth of fill placed and the materials utilised as controlled fill, the site has been reclassified as **CLASS H2**. Accordingly, a conventional shallow footing system that is founded in the 'undisturbed' fill materials could be satisfactorily utilised at this allotment.

The most appropriate foundation system for this allotment is a conventional stiffened raft slab founding in the controlled fill materials. Accordingly, it is recommended that a stiffened raft slab be utilised, with the slab designed and detailed in accordance with the Class H2 classification requirements of AS 2870. The edge and load bearing beams should be founded in the 'undisturbed' compacted clayey fill materials at a minimum depth of 0.5 metres below finished surface levels. Edge and load bearing beams, provided that their contact pressures do not exceed 50 kPa, should be founded in the 'undisturbed' fill materials at a minimum depth of 0.2 metres below finished surface levels. The slab infill panels can be founded directly onto the 'undisturbed' compacted fill materials.

Consideration could also be given to utilising a waffle raft slab. However, if a waffle raft slab is utilised, the near surface topsoil and any loose and disturbed materials will need to be removed from the building footprint prior to construction. Previous experience suggests that this option will require the removal of up to 0.25 metres of topsoil materials and the like. However, there may be sections of the site where additional excavation depths are required. If a waffle raft slab is to be utilised, the waffle raft slab should be designed and detailed in accordance with the Class H2 classification requirements of AS 2870. Particular attention will also need to be directed towards ensuring that a stable moisture regime is maintained around the slab periphery. Furthermore, due to the significant problems that have been experienced with washout from the undersides of slab edges and corners, it will be necessary to found the perimeter beams into the 'undisturbed' compacted clayey fill materials for a distance of not less than 0.4 metres. Perimeter beams founding in this manner would have an allowable bearing pressure of 100 kPa. Internal beams may be founded in the 'undisturbed' compacted clayey fill materials at higher levels than the perimeter beams. An allowable bearing pressure of 100 kPa is also available for these latter beams.

The site classifications and design recommendations presented above assume that the current natural drainage and infiltration conditions at the site will not be markedly affected by the proposed site development work. Care should therefore be taken to ensure that surface water is not permitted to collect adjacent to any structure and that significant changes to seasonal soil moisture equilibria do not develop as a result of service trench construction, garden bed development or tree root action.

Attention is drawn to Appendix B of AS 2870 and its referenced documents as a guide to maintenance requirements for any proposed structures. In particular, attention should be directed at the design stage towards ensuring that any structures are relatively flexible and well articulated (eg closely spaced full height articulation joints, minimal brickwork over or under widow openings etc). Guidance on articulation spacings and associated detailing are provided in Technical Note 61 - Articulated Walling which is published by The Cement and Concrete Association of Australia.

The base of all footing trenches should be carefully inspected to ensure that a satisfactory founding medium is achieved. If any doubt exists to the suitability or otherwise of the founding medium, this office should be consulted immediately.

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

6 October 2014

Our Reference: 11145:PJF1939

Cranbourne Road Holdings c/- Villawood Properties Level 1 6 Riverside Quay SOUTHBANK VIC 3006

Dear Sirs,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING PASADENA ESTATE, CLYDE – STAGE 5

Please find attached our Report Nos 11145AA to 11145AH, 11189AA and 11189AB and 11370AA to 11370AJ that relate to the field density testing that was conducted within the filled allotments associated with the construction of Stage 5 of the above subdivision (refer also to the attached drawing).

The site stripping and associated filling works within this stage of the estate commenced in early April 2011 and continued on an ad hoc basis until mid to late October 2011.

The inspection and testing duties, which were performed by experienced geotechnical engineers and geotechnicians from this office, were undertaken in accordance with the Level 1 guidelines presented in AS 3798 - Guidelines on earthworks for commercial and residential developments. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement.

Prior to fill placement, the stripped surfaces were inspected to ensure that a firm foundation free of organic matter and the like was achieved. Any soft spots and unstable areas and the like that were encountered were removed down to a firm base and replaced with suitably compacted clays.

The fill materials during the recent construction phase were initially spread by a track mounted dozer and then compacted in 0.3 to 0.35 metre (loose) lifts using both a heavy vibrating pad foot roller and a compactor. The fill materials essentially comprised high plasticity clays that were sourced from adjacent stages. Compaction testing of these materials was performed at regular intervals (both vertically and laterally) to confirm that the method of fill placement was appropriate. Any areas that were deemed unsatisfactory were re-worked or given extra rolling to ensure that the compaction criteria was met.

The purpose of performing Level 1 inspection and testing duties is to ensure the quality of the as constructed fill pad(s) and to both minimise the costs of extensive testing and eliminate any unnecessary time delays arising from the testing process. Hence, the provision of Level 1 duties allows the contractor to undertake the filling operation whilst the testing authority monitors the quality control process of the operation. As part of this latter process, the testing authority monitors the compaction methodology on a visual basis and undertakes a number of randomly placed spot checks (ie field density and associated compaction tests) to confirm that the adopted methodology is appropriate.

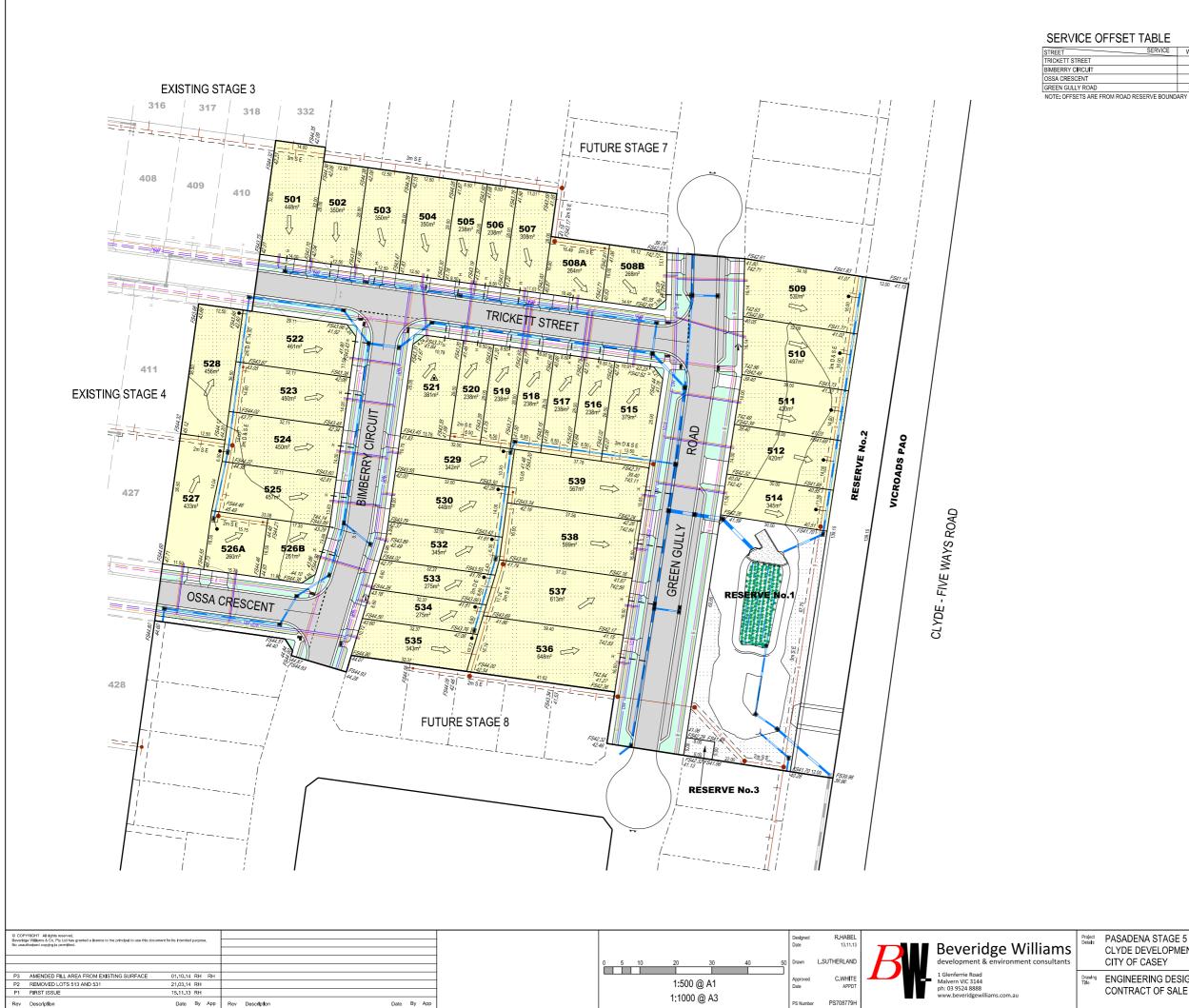
11145 : PJF1939 : October 2014

The attached compaction results, which were located randomly throughout the depth and breadth of the filled areas, are considered to be representative of the bulk fill materials that were placed within the abovementioned stage by Winslow Constructors Pty Ltd during the aforementioned period (Winslow were contracted to undertake the bulk earthworks for Stage 5 of the Pasadena Estate).

The density ratios were all in excess of 95% (standard compactive effort) and the corresponding moisture ratios varied 2.5% either side of optimum moisture.

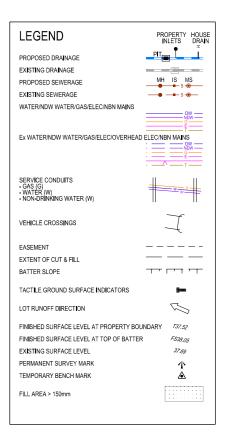
We are of the view that the bulk fill materials that have been placed within Stage 5 of the Pasadena Estate by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Accordingly, the fill materials would be deemed to comply with both the controlled fill requirements of Clause 1.8.13 of AS 2870 – Residential slabs and footings and the structural fill requirements of Clause 1.2.13 of AS 3798.


Please contact the undersigned if you require any additional information.

Yours faithfully,

Civil Geotechnical Services


Peter Fry

SERVICE OFFSET TABLE

SERVICE	WATER	ND WATER	GAS	POWER	NBN	SEWER
-	3.1 N	2.6 N	1.85 N	2.6 S	2.1 S	N/A
Т	3.1 E	2.6 E	2.1 E	2.6 W	2.1 W	N/A
	3.1 S	2.6 S	2.1 S	2.6 N	2.1 N	N/A
AD	3.1 W	2.6 W	2.1 W	2.6 E	2.1 E	1.0 W

- The fill depth shown on this plan is for fill placed during construction of the subdivision while the site is under the control of Beveridge Williams and Co Pty Ltd. Beveridge Williams and Co Pty Ltd has no further knowledge or records of any other filling works throughout this subdivision.
- 2. Fill less than 150mm in depth is not shown on this plan.
- 3. The depth of fill can be determined by calculating the depth between a) the existing surface surveyed by Beveridge Williams & Co Pty Ltd undertaken September 2010 (ref: M3739-FL); and b) the proposed design surface shown on the allotments on this plan.
- The fill depths shown do not take into consideration any breaching, grubbing and removal of topsoil which may occurr prior to filling of the land.
- During the subdivision construction excavation works within the easements shown on this plan may be undertaken for the purposes of laying drainage, electrical, telecommunications, water and sewer main infrastructure.
- 6. Fill in reserves is not shown.
- This plan should be read in conjunction with the plan of subdivision.

		ELIMIN FOR CO				
ect als	PASADENA STAGE 5 CLYDE DEVELOPMENTS CITY OF CASEY	^{scale} 1:500 @) A1			
ving	ENGINEERING DESIGN FOR CONTRACT OF SALE	Project Ref	Stage No 05	SP	Drawing No 101	Rev P3

	IL SERVICES Ion 3136					Re	b No eport No ate Issued	11145 11145AA 09/05/11
	SLOW CONSTRUCT ADENA - STAGE 5 DE NORTH	FORS F	PTY LTD (CA	MPBELLFIE	LD)	Da	sted by ate tested aecked by	KC 19/04/11 JHF
Feature EAR	THWORKS		Lay	er thickness	200	mm	Time:	11:37
Test procedure AS	§ 1289.2.1.1 & 5.8.	1						
Test No			1	2	3	4	5	-
Location			REFER TO FIGURE 1					
Approximate depth b	pelow FSI		-	-	-	-	-	-
Measurement depth		mm	175	175	175	175	175	-
Field wet density		t/m³	1.75	1.79	1.75	1.74	1.79	-
Field moisture conte	nt	%	39.8	35.3	39.4	41.5	39.7	-
Test procedure AS Test No Compactive effort Oversize rock retaine			1	2	3 Stan 19.0	4 dard 19.0	5 19.0	-
Percent of oversize i		mm wet	0	0	0	0	0	-
Peak Converted We		t/m ³	1.73	1.79	1.73	1.71	1.77	-
Adjusted Peak Conv		t/m³	-	-	-	-	-	-
Optimum Moisture C		%	39.5	33.5	39.0	40.5	38.0	-
Moisture Va	riation From		0.5%	1.5%	0.5%	1.0%	1.5%	
	isture Content		wet	wet	wet	wet	wet	-
Density Ratio(R _H	<u></u> ,	%	101.0	100.5	101.0	101.5	101.0	-

TECHNICAL

Accreditation No 9909

8 Rose Avenue, (-					Re Da	b No eport No ate Issued	11145 11145AB 30/04/11
Project	WINSLOW CONSTRUCT PASADENA - STAGE 5 CLYDE	ORS F	YY LTD (CA	MPBELLFIE	LD)	Da	ested by ate tested necked by	KC 27/04/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time:	10:34
Test procedur	e AS 1289.2.1.1 & 5.8.	1						
Test No			6	7	8	9	10	-
Location			REFER TO FIGURE 1					
Approximate de	enth below ESI		-	-	-	-	-	-
Measurement d		mm	175	175	175	175	175	-
Field wet densit	-	t/m³	1.75	1.75	1.76	1.73	1.78	-
Field moisture of		<i>v</i> 111- %	42.0	40.5	39.0	40.8	38.4	-
Test No Compactive effe			6	7	8 Stan		10	-
Oversize rock re Percent of overs	etained on sieve	mm wet	19.0 0	19.0 0	19.0 0	19.0 0	19.0 0	-
Peak Converted		t/m ³	1.75	1.72	1.71	1.74	1.77	-
	Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moist		%	39.5	39.5	38.0	39.0	36.0	-
	re Variation From n Moisture Content		2.5% wet	1.0% wet	1.0% wet	1.5% wet	2.5% wet	-
				101.5	103.0	99.5	101.0	-

Accreditation No 9909

TECHNICAL

Client WINSLOW CONSTRU					I L	Job No Report No Date Issued	11145 11145AC 09/05/11
Project PASADENA - STAGE Location CLYDE NORTH		PTY LTD (CA	MPBELLFIE	LD)	L	Tested by Date tested Checked by	KC 28/04/11 JHF
Feature EARTHWORKS		Lay	er thickness	200	mm	Time	: 13:29
Test procedure AS 1289.2.1.1 & 5	5.8.1						
Test No		11	12	13	14	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE		
Approximate depth below FSL		-	-	-	-	-	-
Measurement depth	mm	175	175	175	175	-	-
Field wet density	t∕m³	1.96	1.96	1.94	1.92	-	-
Field moisture content	%	21.7	19.8	23.4	24.6	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort		11	12	13 Stan	14 dard	-	-
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	-	-
Percent of oversize material	wet	0	0	0	0	-	-
Peak Converted Wet Density	<i>t/m</i> ³	1.91	1.99	1.93	1.92	-	-
Adjusted Peak Converted Wet Densit	ty t/m³ %	-	-	-	-	-	-
Optimum Moisture Content	%	23.5	20.0	23.5	24.5	-	-
Moisture Variation From Optimum Moisture Content		2.0% dry	0.0%	0.0%	0.0%	-	-
Density Ratio (R _{HD})	%	102.5	98.5	100.5	100.0	-	-

TECHNICAL

Accreditation No 9909

Project PASAE Location CLYDE	OW CONSTRUC [®] DENA - STAGE 5 E NORTH	IORSF				Da	eport No ate Issued	11145AD 09/05/11
Feature EARTH			YTY LTD (CA	MPBELLFIE	LD)	Da	ested by ate tested hecked by	KC 29/04/11 JHF
	IWORKS		Lay	er thickness	200	mm	Time:	14:23
Test procedure AS 1	289.2.1.1 & 5.8.	1						
Test No			15	16	17	18	19	-
Location			REFER TO FIGURE 1					
Approximate depth be	low FSL		-	-	-	-	-	-
Measurement depth		mm	175	175	175	175	175	-
Field wet density		t/m³	1.99	1.86	2.00	1.99	1.84	-
Field moisture content		%	16.6	26.3	20.2	17.3	27.1	-
Test procedure AS 1 Test No Compactive effort	200.0.1.1		15	16	17 Stan	18 dard	19	-
Oversize rock retained		mm	19.0	19.0	19.0	19.0	19.0	-
Percent of oversize ma		wet	0	0	0	0	0	-
Peak Converted Wet L		t/m³	1.99	1.90	1.96	1.99	1.85	-
Adjusted Peak Conver		t∕m³	-	-	-	-	-	-
Optimum Moisture Col	ntent	%	19.0	25.5	22.5	19.0	26.5	-
Moisture Varia	ation From		2.5%	0.5%	2.0%	1.5%	0.5%	-
Optimum Moist			dry	wet	dry	dry	wet	
Density Ratio(R _{HD})	%	100.0	98.0	102.5	100.0	99.5	-

Accreditation No 9909

TECHNICAL

VIL GEOTECHNICAL SERVICES 8 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRUCT	FORS F	PTY LTD (CA	MPBELLFIE	ELD)	Re Da	bb No eport No ate Issued ested by	11145 11145AE 11/05/11 KC
Project PASADENA - STAGE 5 Location CLYDE NORTH					Da	ate tested hecked by	04/05/11 JHF
Feature EARTHWORKS		Lay	er thickness	200	mm	Time:	11:05
Test procedure AS 1289.2.1.1 & 5.8.	1						
Test No		20	21	22	23	24	25
Location		REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate depth below FSL		-	-	-	-	-	-
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.88	1.67	1.75	1.77	1.83	1.78
Field moisture content	%	22.6	41.4	44.0	41.4	34.7	34.1
Test procedure AS 1289.5.7.1 Test No Compactive effort		20	21	22 Stan	23 Idard	24	25
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.97	1.72	1.71	1.74	1.79	1.80
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	22.5	40.0	44.0	40.0	33.5	34.0
Moisture Variation From Optimum Moisture Content		0.0%	1.5% wet	0.0%	1.5% wet	1.0% wet	0.0%
Density Ratio(R _{HD})	%	95.5	97.5	102.0	101.0	102.0	99.0
<i>Material description</i> Test No 20 - 25 Clay Fill							
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025					Joter) Jos	581HILF V1.10 OC

TECHNICAL

Accreditation No 9909

SLOW CONSTRUC ADENA - STAGE 5 DE NORTH THWORKS	TORS F	PTY LTD (CA	MPBELLFIE	LD)	Da	sted by te tested ecked by	KC 05/05/11 JHF
DE NORTH							
					Ch	ecked by	JHF
THWORKS							
		Lay	er thickness	200	mm	Time:	09:15
6 1289.2.1.1 & 5.8.	1						
		26	27	28	29	30	31
		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
below FSL		-	-	-	-	-	-
	mm	175	175	175	175	175	175
	t∕m³	1.75	1.80	1.77	1.75	1.89	1.91
ent	%	42.3	41.0	42.3	42.3	26.3	26.1
\$ 1289.5.7.1							
		26	27			30	31
			10.0	-		10.0	10.0
							19.0
				-	-	-	0
1		1.76	1.82	1.83	1.70	1.80	1.89
Content	<i>v</i> 111- %	40.0	- 38.5	40.5	40.0	24.0	24.5
riation From		2.5%	2.5%	1.5%	2.5%	2.5%	1.5%
		wet	wet	wet	wet	wet	wet
isture Content							
	below FSL ent S 1289.5.7.1 ed on sieve material et Density rerted Wet Density	mm t/m ³ ent % S 1289.5.7.1 ed on sieve mm material wet it Density t/m ³ verted Wet Density t/m ³ Content %	26 REFER TO FIGURE 1 below FSL - mm 175 t/m³ 1.75 ont % 42.3 S 1289.5.7.1 26 ed on sieve mm 19.0 material wet 0 tt Density t/m³ 26	26 27 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 below FSL - - mm 175 175 t/m^3 1.75 1.80 mt % 42.3 41.0 S 1289.5.7.1 26 27 ed on sieve mm 19.0 19.0 material wet 0 0 mt 1.76 1.82 verted Wet Density t/m^3 - Content % 40.0 38.5	26 27 28 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 below FSL - - - mm 175 175 175 t/m^3 1.75 1.80 1.77 mt % 42.3 41.0 42.3 S 1289.5.7.1 26 27 28 stan Stan Stan Stan ed on sieve mm 19.0 19.0 material wet 0 0 0 td Density t/m³ 1.76 1.82 1.83 rerted Wet Density t/m³ - - - Content % 40.0 38.5 40.5	26 27 28 29 REFER TO FIGURE 1 TO FIGURE 1 REFER TO FIGURE 1 TO FIGURE 1 FIGURE 1	26 27 28 29 30 REFER TO FIGURE 1 REFER TO FIGU

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

A581HILF V1.10 OCT 09

Accreditation No 9909

8 Rose Avenu	e, Croydon 3136	T050					Job No Report No Date Issued	11145 11145AG 05/05/11
Client Project Location	WINSLOW CONSTRUC PASADENA - STAGE 5 CLYDE NORTH	TORS	STY LID (CA	MPBELLFIEL	D)		Tested by Date tested Checked by	KC 05/05/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200 m	ım	Time	: 10:30
	ure AS 1289.2.1.1 & 5.8	.1						-
Test No			32	33	-	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen		mm	175	175	-	-	-	-
Field wet der	•	t∕m³	1.99	1.78	-	-	-	-
Test proced Test No	ure AS 1289.5.7.1		32	33	-	-	-	-
Compactive e				,	Standa	ard		
	k retained on sieve	тт	19.0	19.0	-	-	-	-
	rersize material	wet	0	0	-	-	-	-
	ted Wet Density	t/m ³	1.92	1.78	-	-	-	-
Adjusted Pea	k Converted Wet Density	t/m³	-	-	-	-	-	-
-		%	24.5	35.0	-	-	-	-
Optimum Mo								
Optimum Mo			0.5%	2.5%	_ [-
Optimum Mo Mois	ture Variation From um Moisture Content		0.5% wet	2.5% wet	-	-	-	-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

John Jos

Accreditation No 9909

	CHNICAL SERVICES e, Croydon 3136 WINSLOW CONSTRUC	TORSI			וח		Job No Report No Date Issued Tested by	11145 11145AH 17/05/11 KC
Project Location	PASADENA - STAGE 5 CLYDE NORTH				5)		Date tested Checked by	06/05/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200 n	nm	Time	e: 14:27
	lure AS 1289.2.1.1 & 5.8.	1						
Test No			34	35	-	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen	nt depth	mm	175	175	-	-	-	-
Field wet der	nsity	t∕m³	1.83	1.84	-	-	-	-
Test No	lure AS 1289.5.7.1		34	35	-	-	-	-
Compactive			40.0	40.0	Stand			
	k retained on sieve	mm	19.0	19.0 0	-	-	-	
Developed of a		wet	0	-	-	-	-	
Percent of ov		t/m³	1.73	1.83	-	-	-	
Peak Conver		+/m3						
Peak Conver Adjusted Pea	ak Converted Wet Density	<u>t/m³</u>	-	- 29.5		-		-
Peak Conver Adjusted Pea		t/m³ %	- 33.5	29.5	-	-	-	-
Peak Conver Adjusted Pea Optimum Mo	ak Converted Wet Density isture Content					-		
Peak Conver Adjusted Pea Optimum Mo Mois	ak Converted Wet Density		- 33.5 2.0% wet	29.5 2.0% wet		-		- - -

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

John Jo

Accreditation No 9909

/IL GEOTECHNICAL SERVICES 8 Rose Avenue, Croydon 3136					l	lob No Report No Date Issued	11189 11189AA 16/05/11
Client WINSLOW CONSTRUCT Project PASADENA - STAGE 5 Location CLYDE NORTH	TORS	PTY LTD (CA	MPBELLFIE	LD)	l	Tested by Date tested Checked by	KC 06/05/11 JHF
Feature EARTHWORKS		Lay	er thickness	200	mm	Time	: 11:57
Test procedure AS 1289.2.1.1 & 5.8.	1						
Test No		1	2	3	4	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	1	
Approximate depth below FSL		-	-	-	-	-	-
Measurement depth	mm	175	175	175	175	-	-
Field wet density	t/m³	1.88	1.74	1.83	1.93	-	-
Field moisture content	%	27.8	38.2	35.5	30.7	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort		1	2	3 Star	4 Idard	-	-
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	-	-
Percent of oversize material	wet	0	0	0	0	-	-
Peak Converted Wet Density	t∕m³	1.87	1.71	1.79	1.92	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	27.0	37.0	33.5	29.0	-	-
Moisture Variation From		1.0%	1.0%	2.0%	2.0%	-	-
Optimum Moisture Content		wet	wet	wet	wet		
Density Ratio(R _{HD})	%	100.5	101.5	102.0	100.5	-	-
<i>Density Ratio (R _{HD})</i> <i>Material description</i> Test No 1 - 4 Clay Fill	%	100.5	101.5	102.0	100.5	-	-
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025					John	J.	A581HILF V1.10

Accreditation No 9909

TECHNICAL

	e, Croydon 3136					L	Report No Date Issued	11189AB 18/05/11
Client Project Location	WINSLOW CONSTRUC PASADENA - STAGE 5 CLYDE NORTH	IOKS F	TT LID (CA	AIVIFBELLFIE	:LU)	L	Tested by Date tested Checked by	KC 10/05/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	: 10:02
Test proced	lure AS 1289.2.1.1 & 5.8.	1						
Test No			5	6	7	8	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	1	
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen	-	тт	175	175	175	175	-	-
Field wet der	nsity	t/m³ %	1.79	1.81	1.81	1.73	-	-
Test proced Test No Compactive e	lure AS 1289.5.7.1		5	6	7 Stan	8 Idard	-	-
	k retained on sieve	mm	19.0	19.0	19.0	19.0	-	-
	versize material	wet	0	0	0	0	-	-
Peak Conver	ted Wet Density	t∕m³	1.80	1.82	1.82	1.77	-	-
	ak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mo	isture Content	%	39.5	41.0	39.0	38.5	-	-
	ture Variation From		2.0%	2.5%	2.0%	1.5%	-	-
			wet	wet	wet	wet		
	um Moisture Content		wor					

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

John Jo

Accreditation No 9909

	CHNICAL SERVICES e, Croydon 3136 WINSLOW CONSTRUC				(D)		Job No Report No Date Issued Tested by	11370 11370AA 07/10/11 TG
Project Location	PASADENA - STAGE 5 CLYDE						Date tested Checked by	03/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200 n	nm	Time	: 13:15
Test proced	lure AS 1289.2.1.1 & 5.8	.1						
Test No			1	2	3	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen	nt depth	тт	175	175	175	-	-	-
Field wet der Field moistur		t/m³ %	1.83 30.4	1.77 38.7	1.76 39.5	-	-	-
Test proced Test No Compactive (lure AS 1289.5.7.1		1	2	3 Stand	- ard	-	-
	k retained on sieve	mm	19.0	19.0	19.0	-	-	-
	versize material	wet	0	0	0	-	-	-
Peak Conver	ted Wet Density	t∕m³	1.87	1.71	1.77	-	-	-
Adjusted Pea	ak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mo	isture Content	%	29.5	38.0	38.5	-	-	-
Mois	ture Variation From num Moisture Content		1.0% wet	1.0% wet	1.0% wet	-	-	-

I has document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026 NATA TECHNICAL

le (€

.

Accreditation No 9909

8 Rose Avenu	CHNICAL SERVICES ne, Croydon 3136						Job No Report No Date Issued	
Client Project Location	WINSLOW CONSTRUC PASADENA - STAGE 5 CLYDE	TORS I	PTY LTD (CA	MPBELLFIE	LD)		Tested by Date tested Checked by	04/10/11
Feature	EARTHWORKS		Lay	er thickness	200 m	ım	Tir	<i>me:</i> 10:51
	lure AS 1289.2.1.1 & 5.8.	1	-					
Test No			4	5	6	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen		тт	175	175	175	-	-	-
Field wet der	nsity	t/m³ %	1.72	1.85	1.93	-	-	-
Test proced Test No Compactive of	lure AS 1289.5.7.1		4	5	6 Standa	-	-	-
· ·	k retained on sieve	mm	19.0	19.0	19.0	aiu -	-	
Oversize roci		wet	0	0	0	-	-	-
	/ersize material		1.81	1.95	1.98	-	-	-
Percent of ov		t∕m³				-		
Percent of ov Peak Conver	rted Wet Density ak Converted Wet Density	t/m³ t/m³	-	-	-	-	-	-
Percent of ov Peak Conver Adjusted Pea	rted Wet Density		- 33.0	- 30.5	- 27.0		-	
Percent of ov Peak Conver Adjusted Pea Optimum Mo Mois	rted Wet Density ak Converted Wet Density	t∕m³	-	- 30.5 0.5% dry	- 27.0 1.0% dry	-	-	

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

(

Accreditation No 9909

VIL GEOTECHNICAL SERVICES 3 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRUC						Job No Report No Date Issued Tested by	11370 11370AC 07/10/11 TG
Project PASADENA - STAGE 5 Location CLYDE	IUKS	TTELD (CA		:LD)		Date tested Checked by	05/10/11 JHF
Feature EARTHWORKS		Lay	er thickness	200 r	nm	Time	e: 09:10
Test procedure AS 1289.2.1.1 & 5.8.	1						_
Test No		7	8	9	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL		-	-	-	-	-	-
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.90	1.89	1.97	-	-	-
Field moisture content	%	21.9	22.2	22.6	-	-	-
Tast procedure AC 1000 5 7 1							
Test procedure AS 1289.5.7.1 Test No		7	8	9	-	-	-
Compactive effort			0	Stanc	lard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	2.00	1.98	2.04	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	21.0	22.0	24.5	-	-	-
Moisture Variation From		0.5%	0.5%	2.0%	-	-	-
Optimum Moisture Content		wet	wet	dry			
Density Ratio (R _{HD})							_
	%	95.0	95.5	96.5	-	-	-

NATA TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

(

Accreditation No 9909

8 Rose Avenue	HNICAL SERVICES a, Croydon 3136						Job No Report No Date Issued	
Client Project Location	WINSLOW CONSTRUCT PASADENA - STAGE 5 CLYDE	FORS F	PTY LTD (CA	MPBELLFIE	ELD)		Tested by Date tested Checked by	JHF 06/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200 r	nm	Time	ə: 12:44
-	ure AS 1289.2.1.1 & 5.8.	1	10					
Test No			10	11	12	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen	-	тт	175	175	175	-	-	-
Field wet den	sity	t∕m³	1.99	1.98	2.01	-	-	-
Field moisture	e content	%	21.5	24.9	21.5	-	-	-
Test proced Test No	ure AS 1289.5.7.1	%	21.5 10	24.9 11	12	-	-	-
Test proced Test No Compactive e	ure AS 1289.5.7.1		10	11	12 Stand	-		<u> </u>
Test proced Test No Compactive e Oversize rock	ure AS 1289.5.7.1 effort < retained on sieve	mm	10 19.0	11 19.0	12 Stand 19.0	- dard -		
Test proced Test No Compactive e Oversize rock Percent of ov	ure AS 1289.5.7.1 effort < retained on sieve ersize material	mm wet	10 19.0 0	11 19.0 0	12 Stand 19.0 0	- dard - -		
Test proced Test No Compactive e Oversize rock Percent of ov Peak Conver	ure AS 1289.5.7.1 effort < retained on sieve	mm	10 19.0	11 19.0	12 Stand 19.0	- dard -		
Test proced Test No Compactive e Oversize rock Percent of ov Peak Conven Adjusted Pea	ure AS 1289.5.7.1 effort c retained on sieve ersize material ted Wet Density	mm wet t/m³	10 19.0 0	11 19.0 0	12 Stand 19.0 0	- dard - - -	- - - - -	
Test proced Test No Compactive e Oversize rock Percent of ov Peak Conven Adjusted Pea Optimum Moi	ure AS 1289.5.7.1 effort cretained on sieve ersize material ted Wet Density k Converted Wet Density	mm wet t/m³ t/m³	10 19.0 0 2.05 -	11 19.0 0 1.97 -	12 Stand 19.0 0 2.01 -	- Jard - - - -		- - - - -

 This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

(

Accreditation No 9909

Project	Croydon 3136 WINSLOW CONSTRUC PASADENA - STAGE 5 CLYDE	FORS F	PTY LTD (CA	MPBELLFIE	ED)		Date Issued Tested by Date tested Checked by	13/10/11 JHF 11/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	e: 13:44
	re AS 1289.2.1.1 & 5.8.	1						
Test No			13	14	15	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate d	epth below FSL		-	-	-	-	-	-
Measurement of		mm	175	175	175	-	-	-
Field wet densi		t/m³	1.90	1.92	1.92	-	-	-
Field moisture	•	%	29.0	28.8	29.5	-	-	-
Test procedui Test No	re AS 1289.5.7.1		13	14	15		-	-
Compactive eff	fort				Stan	dard		
	retained on sieve	тт	19.0	19.0	19.0	-	-	-
Percent of over		wet	0	0	0	-	-	-
Peak Converte		t/m³	1.90	1.95	1.95	-	-	-
	Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moisi		%	28.0	27.0	28.5	-	-	-
	re Variation From m Moisture Content		1.0% wet	2.0% wet	0.5% wet	-	-	-
	(R _{HD})	%	100.5	98.5	98.5	-	-	-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

A581HILF V1.10 OCT 09

Accreditation No 9909

8 Rose Avenue Client	HNICAL SERVICES a, Croydon 3136 WINSLOW CONSTRUC	FORS F	PTY LTD (CA	MPBELLFIE	ELD)		Teste	lssued d by	11370AF 28/10/11 JHF
Project Location	PASADENA - STAGE 5 CLYDE							tested ked by	12/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200 r	nm		Time	: 13:50
	ure AS 1289.2.1.1 & 5.8.	1							
Test No			16	17	18	-		-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate	depth below FSL		-	-	-	-		-	-
Measurement	t depth	тт	175	175	175	-		-	-
Field wet den Field moisture		t/m³ %	1.97 25.3	1.89 32.0	2.03 19.4	-		-	-
Test procedu Test No Compactive e	ure AS 1289.5.7.1		16	17	18 Stanc	- lard		-	-
	retained on sieve	mm	19.0	19.0	19.0	-		-	-
	ersize material	wet	0	0	0	-		-	-
Peak Convert	ed Wet Density	t∕m³	1.95	1.93	2.05	-		-	-
Adjusted Pea	k Converted Wet Density	t∕m³	-	-	-	-		-	-
Optimum Moi	sture Content	%	23.5	32.0	19.0	-		-	-
			1.5%	0.0%	0.5% wet	-		-	-
	ure Variation From um Moisture Content		wet		wei				

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

(

Accreditation No 9909

/IL GEOTECHNICAL SERVICES 8 Rose Avenue, Croydon 3136 Client WINSLOW CONSTRU Project PASADENA - STAGE		PTY LTD (CA	MPBELLFIE	ELD)		Report No Date Issued Tested by Date tested	11370AG 28/10/11 TG 13/10/11
Location CLYDE						Checked by	JHF
Feature EARTHWORKS		Lay	er thickness	200 r	nm	Time	: 14:15
Test procedure AS 1289.2.1.1 & 5.	.8.1						
Test No	-	19	20	21	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL		-	-	_	-	_	-
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.90	1.89	1.89	-	-	-
Field moisture content	%	25.7	26.9	27.8	-	-	-
Test procedure AS 1289.5.7.1							
Test No		19	20	21	-	-	-
Compactive effort			_0	Stand			
, Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.97	1.93	1.93	-	-	-
Adjusted Peak Converted Wet Density	∕ t/m³	-	-	-	-	-	-
- injelesed i ean eentented trot Donoty	%	24.0	26.5	26.0	-	-	-
Optimum Moisture Content							
Optimum Moisture Content		4 = 0 (• • • (4 - 4			
, , , , , , , , , , , , , , , , , , , ,		1.5% wet	0.5% wet	1.5% wet	-	-	-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

A581HILF V1.10 OCT 09

Accreditation No 9909

	HNICAL SERVICES e, Croydon 3136 WINSLOW CONSTRUC ⁻ PASADENA - STAGE 5 CLYDE	TORS I	PTY LTD (CA	MPBELLFIE	LD)		Report No Date Issued Tested by Date tested Checked by	11370AH 28/10/11 JHF 14/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	e: 12:27
-	ure AS 1289.2.1.1 & 5.8.	1						
Test No			22	23	24	25	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE		
Approximate	depth below FSL		-	-	-	-	-	-
Measuremen	•	тт	175	175	175	175	-	-
Field wet den	sity	t∕m³	1.92	1.95	1.95	1.91	-	-
Test proced Test No Compactive e	ure AS 1289.5.7.1		22	23	24 Stan	25 Idard	-	-
· · ·	k retained on sieve	mm	19.0	19.0	19.0	19.0	-	-
	ersize material	wet	0	0	0	0	-	-
Peak Conver	ted Wet Density	t∕m³	1.92	2.04	1.93	1.95	-	-
Adjusted Dee	k Converted Wet Density	t∕m³	-	-	-	-	-	-
	intura Contant	%	26.5	16.0	23.5	24.5	-	-
Adjusted Pea Optimum Mo								
Optimum Mo Mois	ture Variation From um Moisture Content		0.5% wet	0.0%	0.5% wet	0.0%	-	-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

(

		PTY LTD (CA	MPBELLFIE	ELD)		Report No Date Issued Tested by Date tested Checked by	11370AI 28/10/11 KC 17/10/11 JHF
Feature EARTHW	ORKS	Lay	er thickness	200 m	m	Time	: 15:05
Test procedure AS 128	39.2.1.1 & 5.8.1		07				
Test No		26	27	28	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below	/ FSL	-	-	-	-	-	-
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.80	1.91	2.00	-	-	-
Field moisture content	%	31.5	17.9	17.6	-	-	-
Test procedure AS 128	39.5.7.1						
Test No		26	27	28	-	-	-
Compactive effort				Standa	ard		•
Oversize rock retained on	n sieve mm	19.0	19.0	19.0	-	-	-
Demonstrate and a second second	rial wet	0	0	0	-	-	-
		1.86	2.01	2.02	-	-	-
	-		-	- 1	-	-	-
Peak Converted Wet Den Adjusted Peak Converted	d Wet Density t/m ³	-					
Peak Converted Wet Den Adjusted Peak Converted	d Wet Density t/m ³	- 31.0	18.0	18.0	-	-	-
Percent of oversize mater Peak Converted Wet Den Adjusted Peak Converted Optimum Moisture Conte Moisture Variatio Optimum Moisture	d Wet Density t/m³ nt % n From			18.0 0.5% dry	-	-	-

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

A581HILF V1.10 OCT 09

Accreditation No 9909

8 Rose Aven Client Project Location	ue, Croydon 3136 WINSLOW CONSTRUC PASADENA - STAGES 5 CLYDE			MPBELLFIE	LD)	T D	Pate Issued Tested by Date tested Checked by	31/10/11 KC 19/10/11 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	: 11:39
-	dure AS 1289.2.1.1 & 5.8.	1						
Test No			29	30	31	32	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1		
Approximate	e depth below FSL		-	-	-	-	-	-
Measureme	nt depth	тт	175	175	175	175	-	-
Field wet de	ensity	t∕m³	1.92	1.89	1.94	1.96	-	-
Field moistu	ire content	%	11.0	12.6	13.1	12.8	-	-
Test proce	dure AS 1289.5.7.1							
Test No			29	30	31	32	-	-
Compactive	effort				Star	dard		
Oversize roo	ck retained on sieve	тт	19.0	19.0	19.0	19.0	-	-
Percent of o	versize material	wet	0	0	0	0	-	-
	erted Wet Density	t∕m³	1.99	1.96	2.05	2.06	-	-
	ak Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum M	oisture Content	%	13.0	14.0	14.5	14.5	-	-
	sture Variation From num Moisture Content		2.0% dry	1.5% dry	1.5% dry	2.0% dry	-	-
Density Ra	tio(R _{HD})	%	96.5	96.0	95.0	95.0	-	-

ACCORDED OFF TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17026

A581HILF V1.10 OCT 09

Accreditation No 9909