DRAPERS CIVIL CONTRACTING PTY LTD

ARMSTRONG ESTATE STAGE 32

MT. DUNEED

Report On

LEVEL 1 SURVEILLANCE & COMPACTION CONTROL OF EARTHWORKS

Carried Out
By

Project No.: 1862/118

Factory 1/8-10 Catalina Dve, Tullamarine, Vic 3043 PO Box 2693, Gladstone Park, Vic, 3043 ABN 51 102 571 077 PH (03) 9335-1225

11th September 2017 Project No.: 1862/118

Drapers Civil Contracting Pty Ltd PO Box 287 Belmont, Vic 3216 Attention: - Mr. Chris Nation

Dear Sir,

RE: Armstrong Estate Stage 32 - Earthworks

Introduction & Scope

At the request of Drapers Civil Contracting Pty Ltd, Geotechnical Laboratories has carried out inspection and testing of the above mentioned site from the 26th of August 2016 to the 28th of February 2017 where a residential development is being constructed. Inspection and testing of stripping, material quality and compaction control tests were carried out to comply with the requirements of AS 3798 Appendix B, Level 1.

The following documentation was submitted to Geotechnical Laboratories by Drapers Civil Contracting Pty Ltd and was used to determine compliance of earthworks in conjunction with the requirements of AS 3798 – 2007 (See Appendix A).

(1). Standard Faceplan Layout Drawing No. M100611.32-BE01 - Rev. A

General site works involved the placement of fill, using on-site derived clays, to bring the fill area to the required finished levels as indicated on the faceplan drawings.

Site Preparation

Site inspections were undertaken on the 25th of August 2016, the 8th of September 2016 and the 21st of February 2017 confirming that selected areas to be filled were completely stripped of all vegetation and topsoil prior to filling. The brown silty topsoils had been stockpiled around the site for later removal off-site.

Proof roll inspections were performed throughout the project duration to ensure no significant soft areas were present prior to filling.

Material

It is understood that the fill material used was sourced from on-site excavations, mainly drainage trenches and road boxing.

The materials are best described as CLAY fill, brown, orange-brown, slightly sandy, slightly moist to moist considered to be of medium plasticity with fine to course gravel of a basalt origin.

The fill material is consistent with the naturally occurring soils for this region.

Source material was deemed a **Suitable Material** in accordance with the guidelines set out in AS 3798 - 2007 Section 4.4.

Compaction of Fill Material

A sheepsfoot compactor placed material in horizontal loose layers of approximately 200-250mm. The sheepsfoot compactor also performed compaction of the clay fill operating in a criss-cross pattern where possible.

The moisture condition of the fill was closely monitored and moisture conditioning procedures were applied to bring the material closer to its Standard Optimum Moisture Content (AS 1289 5.7.1). Moisture conditioning was carried out using a water cart and mixing with the compactor prior to sheepsfoot rolling.

Compaction Testing

Compaction control testing was performed on-site using a Nuclear Densometer in accordance with AS 1289 5.8.1. Laboratory reference densities were determined from material sampled at each test site location using the Hilf Rapid Compaction Method in accordance with AS 1289 5.7.1.

A total of forty two compaction tests were performed on the earthworks. Results are presented in Appendix A of this report.

Testing frequencies were in accordance with **AS 3798 - 2007 Table 8.1** for **Large Scale Operations.**

Acceptance of fill layers for minimum relative compaction was based on the requirements of *AS 3798 - 2007 Table 5.1 Item 1. Residential.* As a result the compliance criteria adopted by Geotechnical Laboratories was a hilf density ratio not less than 95 percent of the maximum hilf density value as determined by the Standard Hilf Rapid Compaction Method in accordance with AS 1289 5.7.1.

No moisture criteria was specified.

Test results indicate that the above mentioned requirements have been successfully achieved.

Remarks

So far as can be determined, Drapers Civil Contracting Pty Ltd has satisfactorily complied with the compaction and construction processes required for the structural filling of this site. As such structural filling placed on this site by Drapers Civil Contracting Pty Ltd from the 26th of August 2016 to the 28th of February 2017 can be categorised as CONTROLLED FILL in accordance with AS 2870-2011.

Note: Test results and controlled fill certification relates only to fill placed by Drapers Civil Contracting Pty Ltd and for earthworks completed at the time of testing. Any previous or subsequent earthworks will require a separate evaluation.

Yours Faithfully GEOTECHNICAL LABORATORIES

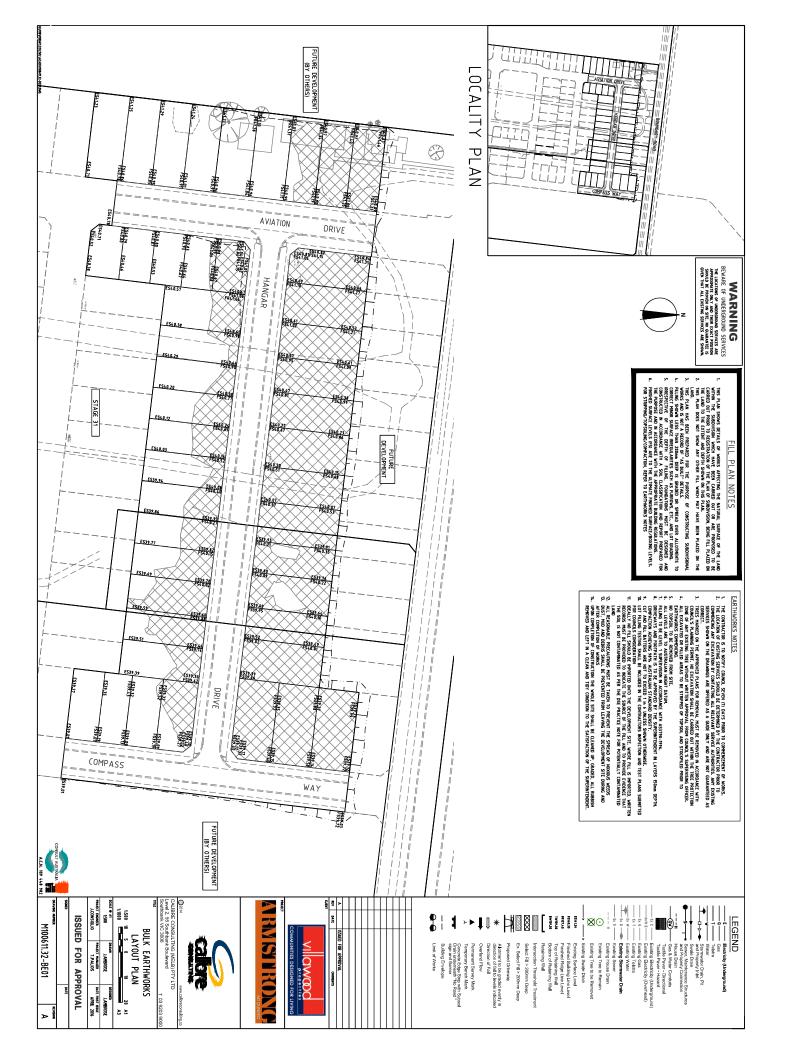
Sam Loza

Laboratory Manager

DRAPERS CIVIL CONTRACTING PTY LTD

ARMSTRONG ESTATE STAGE 32

MT. DUNEED


Report On

LEVEL 1 SURVEILLANCE & COMPACTION CONTROL OF EARTHWORKS

Carried Out
By

APPENDIX A

REPORT NO.: # 1861/217

LOCATION: DRAPERS - Armstrong Estate Stage 32

	<u> </u>				N2	N2	N2	
С П	OTES:	ı	1	-	26/08/16	26/08/16	26/08/16	DATE OF TESTS
Test s) 	1	-	ı	3	2	1	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	Clay Eill			locations.	Refer to #1861/218 for			TEST LOCATION
art 4.4.		I	I	I	2.01	2.13	2.05	FIELD WET DENSITY (t/m³)
		ı	ı	ı	21.0	19.5	19.0	FIELD MOISTURE CONTENT (%)
		ı	I	Ī	100.0	103.5	100.0	HILF DENSITY RATIO STANDARD (%)
Start Time: 9:38am	Compostion	ı	I	-	2.00	2.06	2.05	STANDARD PCWD OR APCWD (t/m³)
Start Time: 9:38am Finish Time: 10:00		ı	-	-	21.0	19.5	18.5	STANDARD OPTIMUM MOISTURE CONTENT (%)
Finish Tir	o camplo	-	1	-	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 10:00	d offer com	ı	I	1	0.0 Drier	0.0 Drier	0.5 Wetter	PROBE FROM DEPTH OPTIMUM SETTING MOISTURE (mm) CONTENT (%)
Jaction.	Soction	ı	-	-	100.0	100.0	102.5	MOISTURE RATIO (%)
		1	-	-	0	0	0	WET +19mm (%)
		ı	ı	ı	0	0	0	WET WET +19mm +37.5mm (%) (%)
		ı	I	ı	0	200	200	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

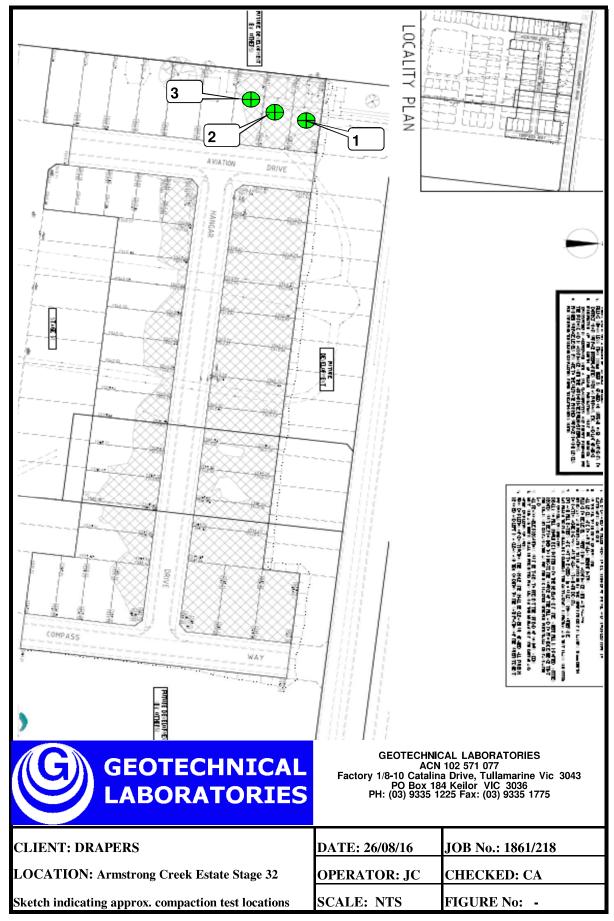
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. This document may not be reproduced except in

NATA Accredited Laboratory Number 14561

(Approved Signatory)

SAM LOZA


Issue Date: 1/9/2016

Rev: 12 SS3092-1 July 2016

*

Field Density, Nuclear Gauge: AS 1289 5.8.1

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

REPORT NO: # 1861/219

LOCATION: DRAPERS - Armstrong Estate Stage 32

			paction. m	Compaction specimens sampled after compaction. Start Time: 11:50am Finish Time: 12:10pm	s sample Finish T	n specimen 11:50am	Compaction specime Start Time: 11:50am			oart 4.4.	Onsite Clay Fill Test sites located - Geolab Procedure 4, Part 4.4.	Onsite Test sit	NOTES: Onsite Clay Fill Test sites located
ı	,	-	ı	1	I	ı	ı	ı	1	1		1	1
1	'	-	-	ı	1	1	ı	1	1	ı		'	ı
1	1	,	'	1	1	1	ı	1	1	1	locations.	ı	1
0	0	0	87.0	2.5 Drier	175	18.0	2.08	105.5	16.0	2.19	Refer to #1861/220 for	ω	29/08/16
200	0	0	104.5	0.5 Wetter 104.5	175	15.5	2.11	101.0	16.0	2.13		2	29/08/16
400	0	0	90.5	2.0 Drier	175	20.0	2.04	101.0	18.0	2.07		_	29/08/16
APPROX. DEPTH BELOW FINISH LEVEL (mm)	WET WET +19mm +37.5mm (%) (%)	WET +19mm (%)	MOISTURE RATIO (%)	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)	PROBE DEPTH SETTING (mm)	STANDARD OPTIMUM MOISTURE CONTENT (%)	STANDARD PCWD OR APCWD (t/m³)	HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

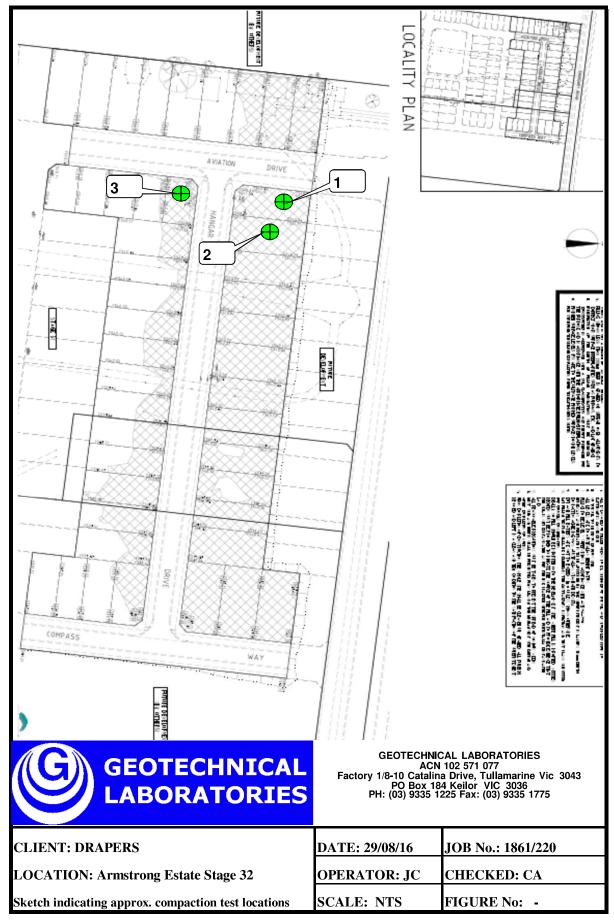
Compaction Test: AS 1289 5.7.1

Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1 NATA Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in

NATA Accredited Laboratory Number 14561

standards. This document may not be reproduced except in

(Approved Signatory)


SAM LOZA

Issue Date: 2/9/2016

Rev: 12 SS3092-1 July 2016

:

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1

REPORT NO: # 1861/221

LOCATION: DRAPERS - Armstrong Estate Stage 32

: (:	NOTES: Onsite Clay Fill	ı	ı	-	31/08/16	31/08/16	31/08/16	DATE OF TESTS
Test si	Onsit	ı	ı	1	ω	2	1	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	e Clay Fill			locations.	Refer to #1861/222 for			TEST LOCATION
art 4.4.		ı	I	I	2.10	2.14	2.05	FIELD WET DENSITY (t/m³)
		I	ı	ı	19.0	18.0	20.0	FIELD MOISTURE CONTENT (%)
		-	1	-	103.5	100.5	0.001	HILF DENSITY RATIO STANDARD (%)
Start Time: 10:26am	Compactio	ı	ı	ı	2.03	2.13	2.06	STANDARD PCWD OR APCWD (t/m³)
10:26am	Compaction specimens sampled after compaction.	-	-	-	19.5	17.5	20.0	STANDARD OPTIMUM MOISTURE CONTENT (%)
Finish T	s sample	-	ı	-	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 10:42am	d after com	ı	I	1	0.5 Drier	0.0 Wetter 101.5	0.0 Wetter	PROBE FROM FROM OPTIMUM SETTING MOISTURE (mm) (%)
im Sign	oaction	-	-	-	97.5	101.5	101.0	MOISTURE RATIO (%)
		ı	ı	ı	0	0	0	WET +19mm (%)
		ı	ı	-	0	0	0	WET WET +19mm +37.5mm (%) (%)
		ı	1	1	0	0	200	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

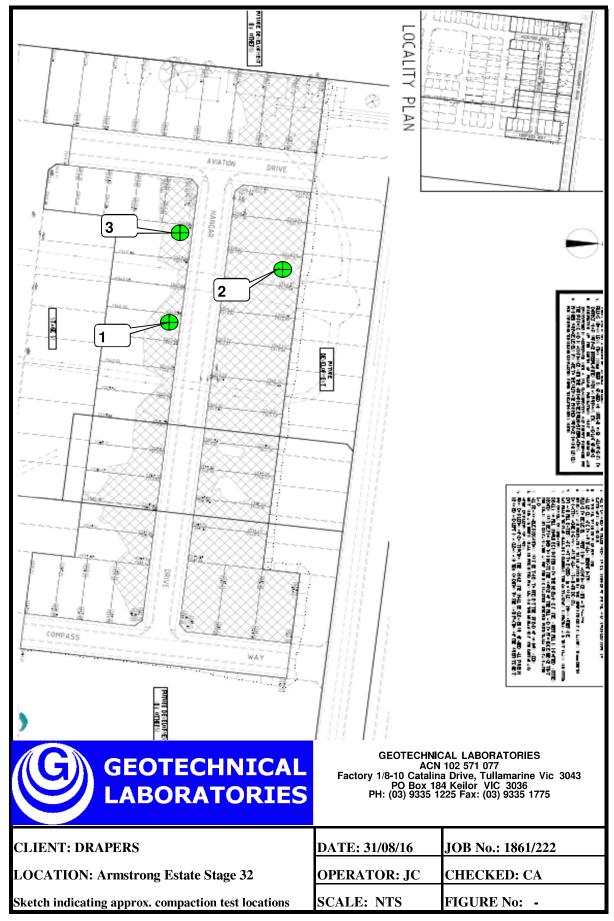
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1 Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in

standards. This document may not be reproduced except in

NATA Accredited Laboratory Number 14561

NATA

Issue Date: 5/9/2016


(Approved Signatory)

SAM LOZA

Rev: 12 SS3092-1 July 2016

*

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1

REPORT NO: # 1861/223

LOCATION: DRAPERS - Armstrong Estate Stage 32

	Z				D 2	N2	N)	
	OTES:	-	I	ı	2/09/16	2/09/16	2/09/16	DATE OF TESTS
Test s	Onsit	ı	ı	ı	3	2	1	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	NOTES: Onsite Clay Fill			locations.	Refer to #1861/224 for			TEST LOCATION
art 4 4		I	I	1	2.06	2.02	1.99	FIELD WET DENSITY (t/m³)
		-	ı	ı	20.5	20.0	20.5	FIELD MOISTURE CONTENT (%)
		-	1	1	102.0	101.0	101.0	HILF DENSITY RATIO STANDARD (%)
Start Time: 9:45am	Compaction	-	1	1	2.02	2.00	1.97	STANDARD PCWD OR APCWD (t/m³)
9:45am	n specimen	-	-	1	23.5	23.0	23.5	STANDARD OPTIMUM MOISTURE CONTENT (%)
Finish Tir	s sample	-	ı	1	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 10:02am	Compaction specimens sampled after compaction.	ı	ı	ı	3.0 Drier	3.0 Drier	3.0 Drier	PROBE FROM DEPTH OPTIMUM SETTING MOISTURE (mm) (%)
3	oaction.	-	-	ı	87.5	86.5	87.0	MOISTURE RATIO (%)
		-	ı	ı	0	0	0	WET +19mm (%)
		-	ı	i	0	0	0	WET WET +19mm +37.5mm (%) (%)
		ī	i	ı	0	0	0	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

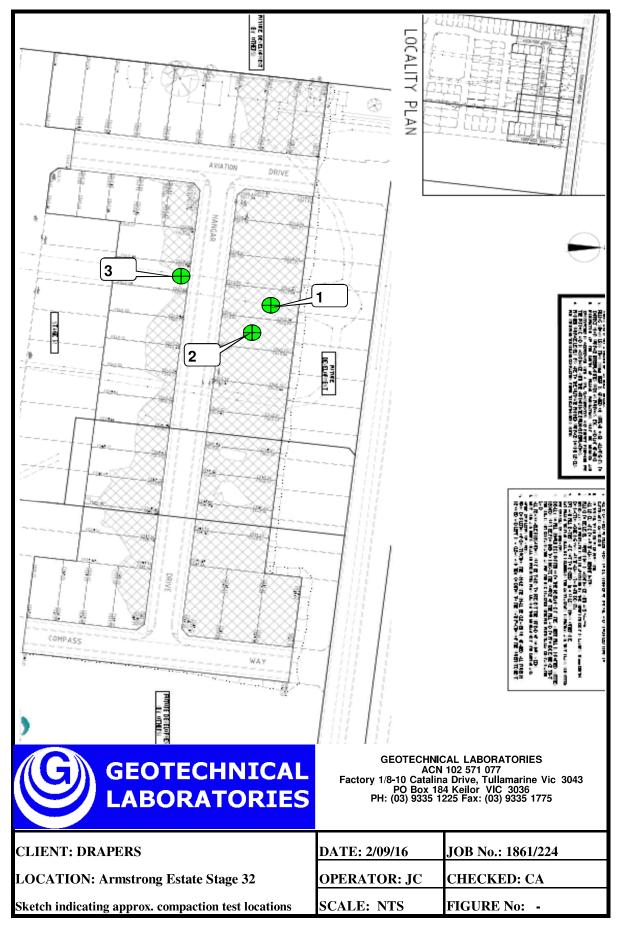
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Field Density, Nuclear Gauge: AS 1289 5.8.1

Soil Layer thickness: 200mm

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

*


Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in standards. This document may not be reproduced except in

NATA

NATA Accredited Laboratory Number 14561

(Approved Signatory) SAM LOZA

Issue Date: 5/9/2016

REPORT NO.: # 1861/225 LOCATION: DRAPER

TION: DRAPERS - Armstrong Estate Stage 32

	NOTE	,	1	1	6/09/16	6/09/16	6/09/16	DATE OF TESTS		
Te	S: Or				16 3	16 2	16			
st site	nsite (1	ı	ı		Ν		TEST NUM.		
Test sites located - Geolab Procedure 4, Part 4.4.	NOTES: Onsite Clay Fill			locations.	Refer to #1861/226 for			TEST LOCATION		
art 4.4		1.96	FIELD WET DENSITY (t/m³)							
		-	ı	-	24.0	23.5	24.0	FIELD MOISTURE CONTENT (%)		
		,	1		99.0	100.5	99.5	HILF DENSITY RATIO STANDARD (%)		
Start Time: 9:33am	Compaction		ı	-	1.95	1.98	1.97	STANDARD PCWD OPTIMUM OR MOISTURE APCWD CONTENT (t/m³) (%)		
	n specimen	-	1	-	24.0	23.5	24.0	STANDARD OPTIMUM MOISTURE CONTENT (%)		
Finish Ti	s sample	ı	1	1	175	175	175	PROBE DEPTH SETTING (mm)		
Finish Time: 9:57am	Compaction specimens sampled after compaction.	-	1	-	0.0 Drier	0.0 Drier	0.0 Drier	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)		
	paction.	1	ı	-	99.0	100.0	99.0	MOISTURE RATIO (%)		
				-	ı	ı	0	0	0	WET +19mm (%)
		ı	1	ı	0	0	0	WET WET +19mm +37.5mm (%) (%)		
		1	ı	1	0	0	0	APPROX. DEPTH BELOW FINISH LEVEL (mm)		

Rev: 12 SS3092-1 July 2016

**

Field Density, Nuclear Gauge: AS 1289 5.8.1

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

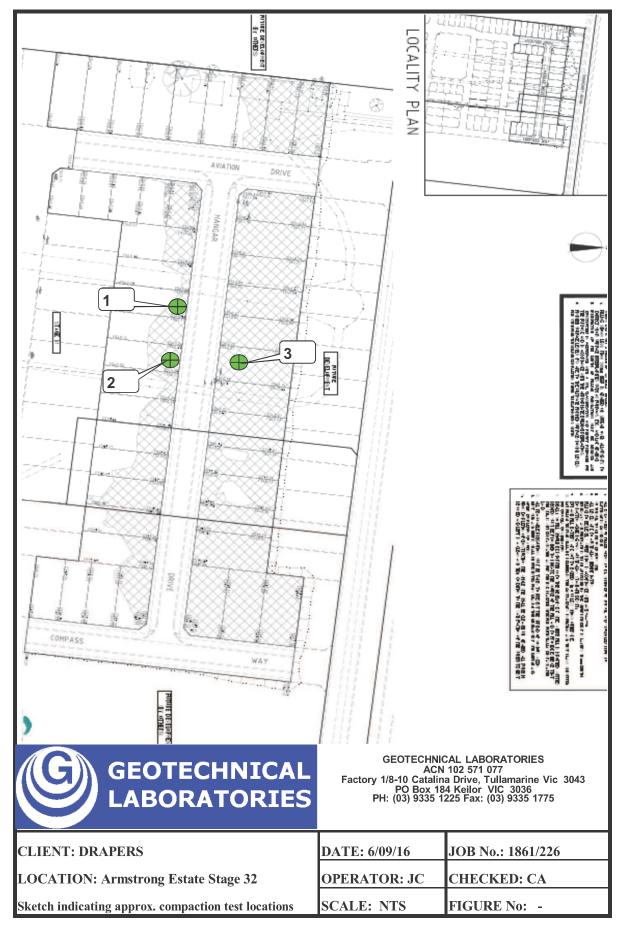
Soil Layer thickness: 200mm

Hilf Density Ratio and Hilf Moisture Variation , Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

NATA

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in

standards. This document may not be reproduced except in


(Approved Signatory)
Issue Date: 12/9/2016

SAM LOZA

NATA Accredited Laboratory Number 14561

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1 Compaction Test: AS 1289 5.7.1

REPORT NO: # 1861/229

LOCATION: DRAPERS - Armstrong Estate Stage 32

m	⊐ -	S sampled after comp Finish Time: 2:05pm	Finish Ti	: 1:50pm	Start Time: 1:50pm Finish Time: 2:05pm			Part 4.4.	Clisite Clay है।। Test sites located - Geolab Procedure 4, Part 4.4.	Test si	0.
	naction	d after com	le eamnla	n specimer	Compaction				NOTES: Onsite Clay Fill	Oneit	NOTES:
	1	ı	ı	-	ı	ı	I	ı		Ī	I
1		I	-	-	ı	1	1	I		ı	1
1		-	-	-	-	-	ī	-	locations.	Î	1
9.0	99.0	0.0 Drier	175	22.5	2.00	95.0	22.5	1.91	Refer to #1861/230 for	3	21/09/16
0.0	100.0	0.0 Drier	175	23.5	2.02	97.0	23.5	1.96		2	21/09/16
)1.(10	0.5 Wetter 101.0	175	26.5	1.92	99.5	27.0	1.91		1	21/09/16
OISTUF RATIO (%)	M	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)	PROBE DEPTH SETTING (mm)	STANDARD OPTIMUM MOISTURE CONTENT (%)	STANDARD PCWD OR APCWD (t/m³)	HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

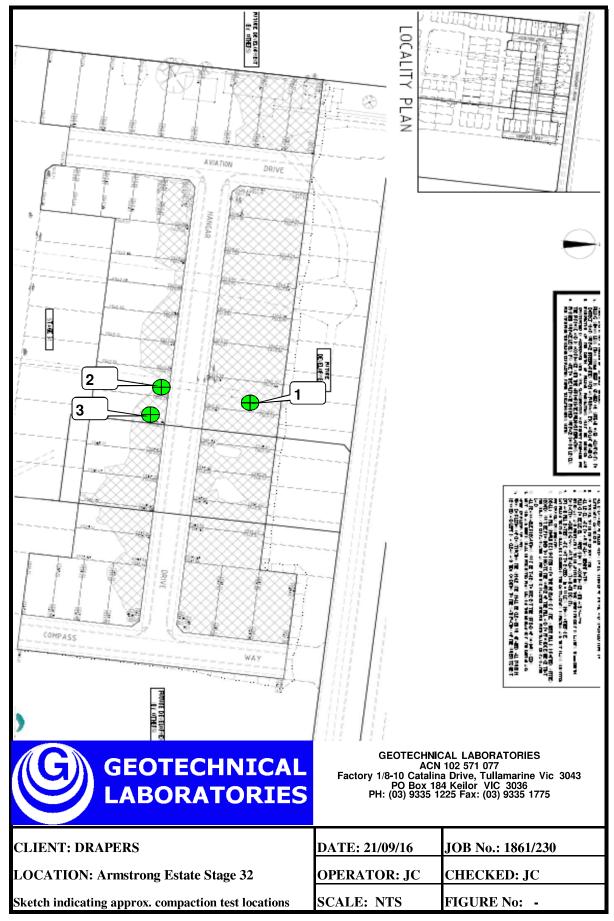
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Field Density, Nuclear Gauge: AS 1289 5.8.1

Soil Layer thickness: 200mm

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

NATA


Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in standards. This document may not be reproduced except in

NATA Accredited Laboratory Number 14561

(Approved Signatory) SAM LOZA

Issue Date: 27/9/2016

:

REPORT NO: # 1861/234

LOCATION: DRAPERS - Armstrong Estate Stage 32

	NOT				22/09/16	22/09/16	22/09/16	DATE OF TESTS
	ES: (·	·			9/16	
ביי ביי ביי)nsite	1	ı	I	ω	2	_	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	NOTES: Onsite Clay Fill			approx. test sue locations.	Refer to #1861/235 for			TEST LOCATION
art 4.4		1	1	ı	2.08	2.09	1.99	FIELD WET DENSITY (t/m³)
		-	-	-	21.0	20.5	24.0	FIELD MOISTURE CONTENT (%)
		1	1	-	102.0	102.5	102.0	HILF DENSITY RATIO STANDARD (%)
Start Time: 3:30pm	Compaction	1	I	ı	2.04	2.04	1.95	STANDARD PCWD OR APCWD (t/m³)
	Compaction specimens sampled after compaction.	-	-	-	21.5	20.5	24.0	STANDARD OPTIMUM MOISTURE CONTENT (%)
Finish Tir	s sample	ı	ı	-	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 3:48pm	d after com	1	1	ı	0.0 Drier	0.0 Wetter 101.0	0.0 Wetter 101.0	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)
	oaction.	-	-	-	99.0	101.0	101.0	MOISTURE RATIO (%)
		I	ı	1	0	0	0	WET +19mm (%)
		ı	ı	-	0	0	0	WET WET +19mm +37.5mm (%) (%)
		1	ı	-	200	200	200	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

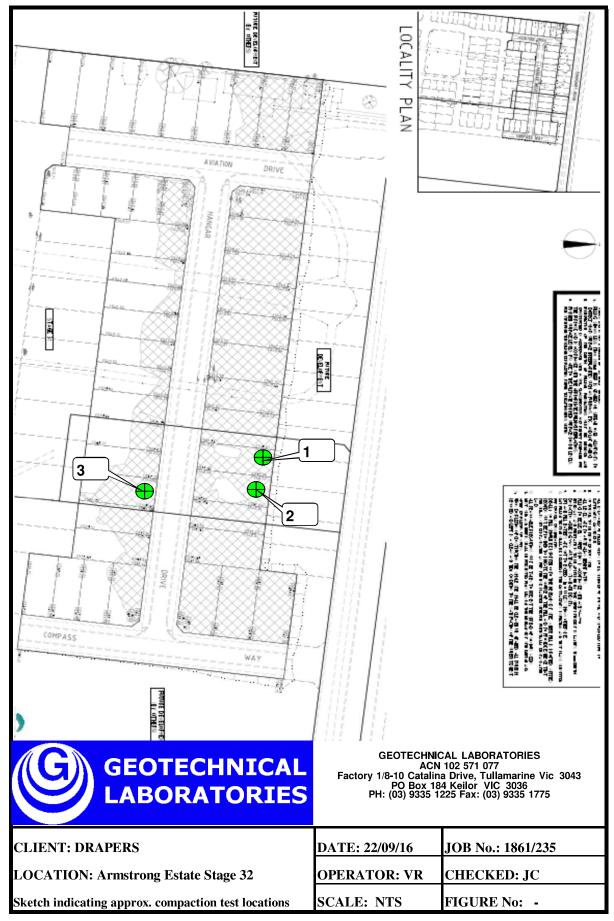
Moisture Content: AS 1289 2.1.1 Compaction Test: AS 1289 5.7.1

Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1 Soil Layer thickness: 200mm

Field Density, Nuclear Gauge: AS 1289 5.8.1

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

:


Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in standards. This document may not be reproduced except in

NATA

NATA Accredited Laboratory Number 14561

(Approved Signatory) SAM LOZA

Issue Date: 29/9/2016

REPORT NO: # 1861/236

LOCATION: DRAPERS - Armstrong Estate Stage 32

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

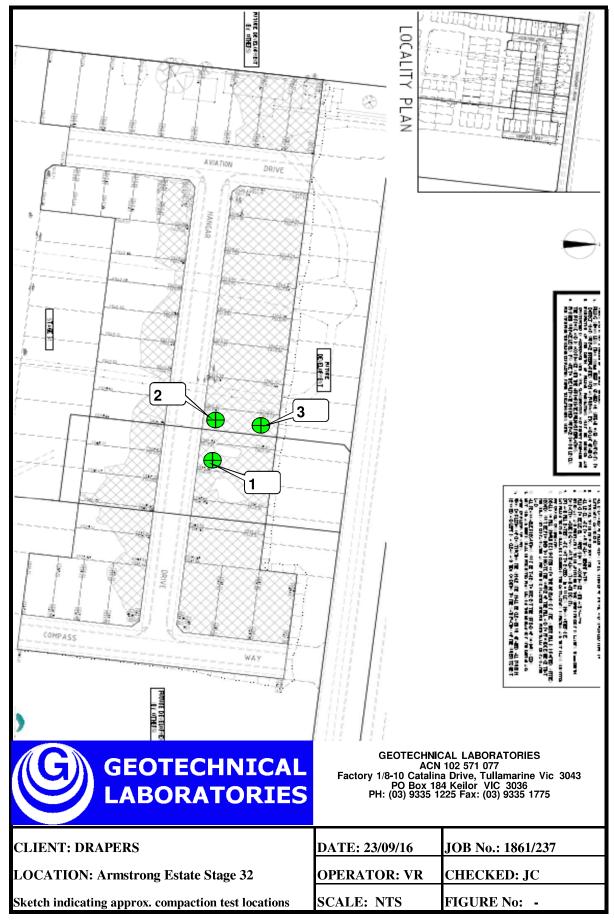
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Field Density, Nuclear Gauge: AS 1289 5.8.1

Soil Layer thickness: 200mm

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

NATA


Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in standards. This document may not be reproduced except in

NATA Accredited Laboratory Number 14561

(Approved Signatory) SAM LOZA

Issue Date:29/9/2016

*

REPORT NO: # 1861/238

LOCATION: DRAPERS - Armstrong Estate Stage 32

	Z				2	2	N	
	OTES:	ı	ı	1	26/09/16	26/09/16	26/09/16	DATE OF TESTS
Test s	Onsit	-	İ	ı	з	2	1	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	NOTES: Onsite Clay Fill			locations.	Refer to #1861/239 for			TEST LOCATION
art 4 4		I	1	1	1.96	1.96	1.99	FIELD WET DENSITY (t/m³)
		-	ı	ı	21.5	25.5	26.0	FIELD MOISTURE CONTENT (%)
		-	1	1	97.0	0.86	99.5	HILF DENSITY RATIO STANDARD (%)
Start Time: 11:52am	Compaction	-	1	1	2.02	2.00	2.01	STANDARD PCWD OR APCWD (t/m³)
11:52am	Compaction specimens sampled after compaction.	-	-	1	22.0	25.5	26.0	STANDARD OPTIMUM MOISTURE CONTENT (%)
Finish T	s sample	-	ı	ı	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 12:08pm	d after com	-	1	1	0.5 Drier	0.5 Wetter 101.0	0.0 Drier	PROBE FROM DEPTH OPTIMUM SETTING MOISTURE (mm) (%)
Ħ	paction.	ı	1	ı	98.0	101.0	100.0	MOISTURE RATIO (%)
		-	ı	ı	0	0	0	WET +19mm (%)
		-	i	i	0	0	0	WET WET +19mm +37.5mm (%) (%)
		ı	1	ı	200	200	200	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

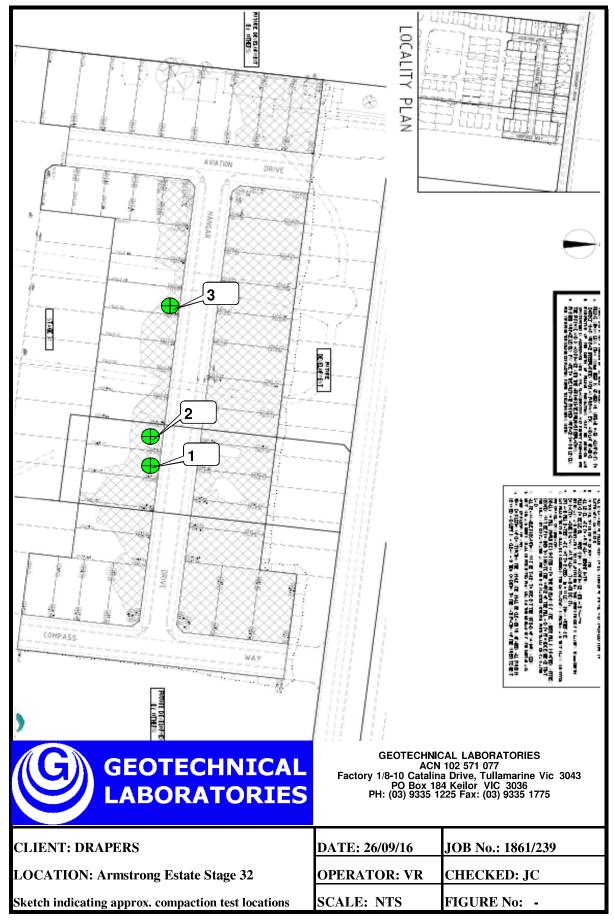
Compaction Test: AS 1289 5.7.1

Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Accredited for compliance with ISO/IEC 17025. The results

of the tests, calibrations and/or measurements included in standards. This document may not be reproduced except in

NATA


NATA Accredited Laboratory Number 14561

(Approved Signatory) Issue Date: 3/10/2016

SAM LOZA

:

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1

REPORT NO: # 1861/243

LOCATION: DRAPERS - Armstrong Estate Stage 32

action.	Compaction specimens sampled after compaction.	s sample	n specimen	Compaction				NOTES: Onsite Clay Fill	Onsite	NOTES:
-	-	ı	-	-	-	-	-		ı	I
ı	ı	1	1	ļ	1	1	i		1	1
-	1	1	1	-	1	1	ı	locations.	1	1
96.0	1.0 Drier	175	23.0	1.97	102.5	22.0	2.01	Refer to #1861/244 for	а	27/09/16
99.0	0.5 Drier	175	25.5	1.95	99.5	25.0	1.95		2	27/09/16
101.0	0.0 Wetter	175	24.5	1.99	100.5	24.5	2.00		_	27/09/16
	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)	PROBE DEPTH SETTING (mm)	STANDARD OPTIMUM MOISTURE CONTENT (%)	STANDARD PCWD OR APCWD (t/m³)	HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS
	MOISTURE WET WET RATIO +19mm +37.5mm (%) (%) (%) (%) (%)	MOISTURE RATIO (%) r 101.0 99.0	VARIATION FROM OPTIMUM MOISTURE MOISTURE (%) (%) (%) 0.0 Wetter 101.0 0.5 Drier 99.0 1.0 Drier 96.0	PROBE FROM DEPTH OPTIMUM SETTING MOISTURE (%) 175 0.0 Wetter 101.0 175 1.0 Drier 96.0	STANDARD OPTIMUM OPTIMUM DEPTH OPTIMUM NOISTURE CONTENT (mm) CONTENT (%) 24.5 175 0.0 Wetter 101.0 25.5 175 1.0 Drier 96.0	STANDARD PCWD OPTIMUM APCWD OR (t/m²) STANDARD OPTIMUM OPTIMUM (mm) VARIATION FROM FROM EROM (mm) VARIATION FROM FROM (mm) WOISTURE SETTING MOISTURE (mm) VARIATION MOISTURE (moisture) MOISTURE (moisture) <t< td=""><td>HILF DENSITY PCWD OPTIMUM RATIO OR STANDARD OPTIMUM RATIO OR STANDARD (%) 100.5 100.5 1.99 24.5 102.5 1.97 23.0 105 107 108 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.6 109.0</td><td> FIELD HILF STANDARD STANDARD PROBE FROM FROM OPTIMUM OPTIMUM DEPTH OPTIMUM MOISTURE SETTING SE</td><td> FIELD FIELD WET WET WET WET WET CONTENT CONTENT (t/m²) (%) (%) (*%)</td><td> TEST TEST LOCATION FIELD MUNITY FOWD FOWD MUNITY FOWD MUNITY FOWD F</td></t<>	HILF DENSITY PCWD OPTIMUM RATIO OR STANDARD OPTIMUM RATIO OR STANDARD (%) 100.5 100.5 1.99 24.5 102.5 1.97 23.0 105 107 108 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.5 1.97 23.0 109.6 109.0	FIELD HILF STANDARD STANDARD PROBE FROM FROM OPTIMUM OPTIMUM DEPTH OPTIMUM MOISTURE SETTING SE	FIELD FIELD WET WET WET WET WET CONTENT CONTENT (t/m²) (%) (%) (*%)	TEST TEST LOCATION FIELD MUNITY FOWD FOWD MUNITY FOWD MUNITY FOWD F

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

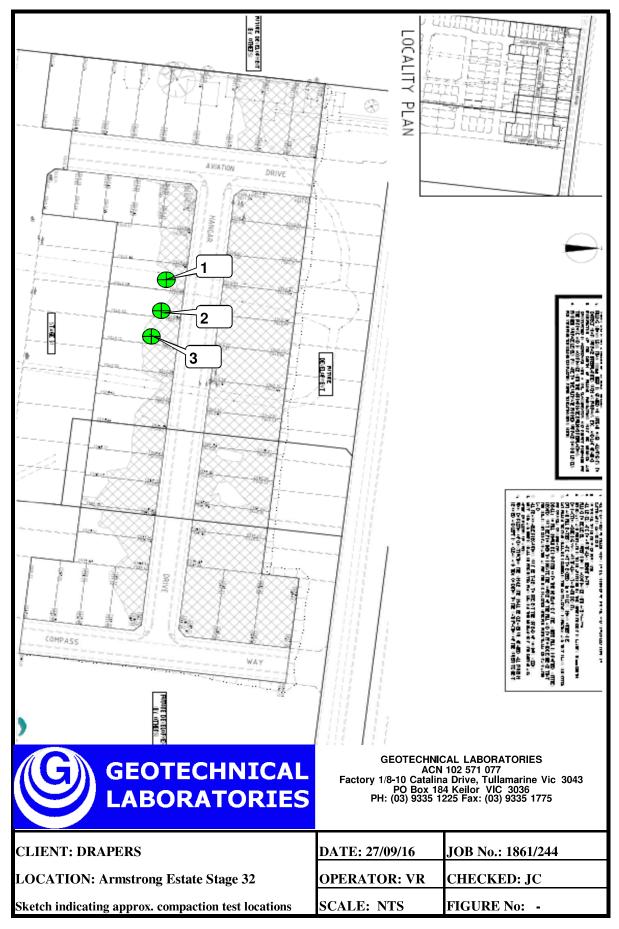
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Field Density, Nuclear Gauge: AS 1289 5.8.1

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

Soil Layer thickness: 200mm

:


of the tests, calibrations and/or measurements included in Accredited for compliance with ISO/IEC 17025. The results standards. This document may not be reproduced except in

NATA

NATA Accredited Laboratory Number 14561

(Approved Signatory) SAM LOZA

Issue Date: 5/10/2016

REPORT NO: # 1861/245

LOCATION: DRAPERS - Armstrong Estate Stage 32

	ĩ T	Finish Time: 11:34am	Finish Ti	11:20am	Start Time: 11:20am			Part 4.4	Test sites located - Geolab Procedure 4, Part 4.4.	Test sit	
oaction.	~	ป after com	s sample	Compaction specimens sampled after compaction.	Compaction			•	NOTES: Onsite Clay Fill	Onsite	NOTES:
1		-	I	ı	ı	1	ı	ı		1	ı
ı		ı	ı	ı	ı	ı	ı	ı		ı	I
ı		-	ī	1	ı	1	1	-	locations.	1	-
90.5		3.0 Drier	175	29.5	1.92	101.0	26.5	1.95	Refer to #1861/246 for	З	29/09/16
97.0		0.5 Drier	175	25.0	1.94	102.5	24.0	1.99		2	29/09/16
95.0		1.0 Drier	175	26.0	1.92	101.5	24.5	1.94		1	29/09/16
MOISTURE RATIO (%)		VARIATION FROM OPTIMUM MOISTURE CONTENT (%)	PROBE DEPTH SETTING (mm)	STANDARD OPTIMUM MOISTURE CONTENT (%)	STANDARD PCWD OR APCWD (t/m³)	HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

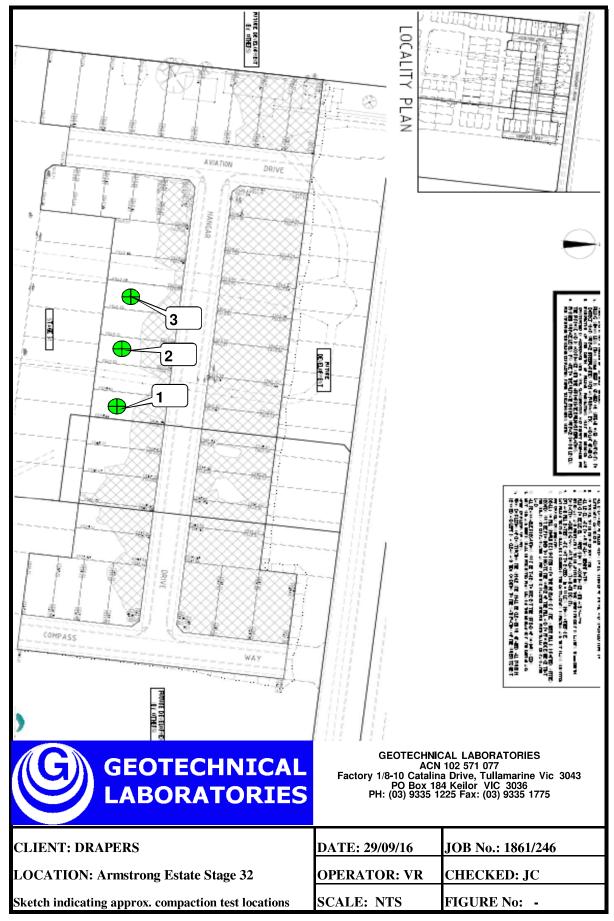
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

NATA Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in

NATA Accredited Laboratory Number 14561

standards. This document may not be reproduced except in

(Approved Signatory)


SAM LOZA

Issue Date: 7/10/2016

Rev: 12 SS3092-1 July 2016

:

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1

REPORT NO: # 1861/260

LOCATION: DRAPERS - Armstrong Estate Stage 32

			Ħ	Finish Time: 12:52pm	Finish T	12:28pm	Start Time: 12:28pm			Part 4.4.	Test sites located - Geolab Procedure 4, Part 4.4.	Test si	
			paction.	d after com	s sampled	Compaction specimens sampled after compaction.	Compaction				NOTES: Onsite Clay Fill	Onsit	NOTES:
	1	ı	ı	-	-	-	ı	-	-	-		1	I
	1	ı	í	-	ı	1	1	1	1	ı		ı	I
	ı	-	i	-	-	-	-	-	-	-	approx. rest sue locations.	ı	ı
	0	0	96.0	1.0 Drier	175	25.5	1.94	99.5	24.5	1.93	Refer to #1861/261 for	з	23/02/17
	0	0	98.0	0.5 Drier	175	24.0	1.98	103.5	23.5	2.05		22	23/02/17
	0	0	99.0	0.0 Drier	175	21.0	2.04	100.5	21.0	2.05		1	23/02/17
APPROX. DEPTH IM BELOW FINISH LEVEL (mm)	WET WET +19mm +37.5mm (%) (%)		MOISTURE RATIO (%)	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)	PROBE DEPTH SETTING (mm)	STANDARD OPTIMUM MOISTURE CONTENT (%)	STANDARD PCWD OR APCWD (t/m³)	HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

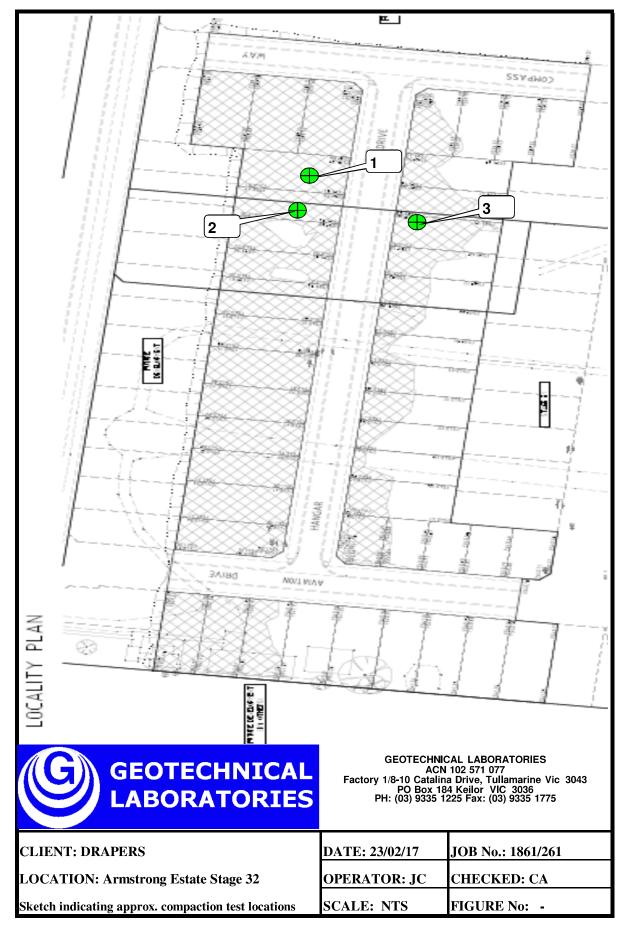
Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b)

Field Density, Nuclear Gauge: AS 1289 5.8.1

Soil Layer thickness: 200mm

:


of the tests, calibrations and/or measurements included in Accredited for compliance with ISO/IEC 17025. The results standards. This document may not be reproduced except in

NATA

NATA Accredited Laboratory Number 14561

(Approved Signatory) MICK CROWE

Issue Date: 20/3/2017

REPORT NO: # 1861/262

LOCATION: DRAPERS - Armstrong Estate Stage 32

	NO.				27/	27/(27/ı	D.
	TES:	1	1	ı	27/02/17	27/02/17	27/02/17	DATE OF TESTS
Test si	Onsit	ı	ı	ı	з	2	1	TEST NUM.
Test sites located - Geolab Procedure 4, Part 4.4.	NOTES: Onsite Clay Fill			locations.	Refer to #1861/263 for			TEST LOCATION
art 4.4.		i	ı	ı	2.04	1.89	1.91	FIELD WET DENSITY (t/m³)
		ı	ı	ı	16.5	16.5	16.5	FIELD MOISTURE CONTENT (%)
		1	1	1	103.5	102.0	102.0	HILF DENSITY RATIO STANDARD (%)
Start Time: 8:45am	Compaction specime	1	1	1	1.97	1.85	1.87	STANDARD PCWD OR APCWD (t/m³)
	n speciment	-	ı	-	19.5	20.0	19.5	STANDARD OPTIMUM MOISTURE CONTENT (%)
inish Tin	s sample	ı	ı	-	175	175	175	PROBE DEPTH SETTING (mm)
Finish Time: 9:10am	ens sampled after compaction	1	1	1	3.0 Drier	3.0 Drier	3.5 Drier	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)
	oaction.	-	1	-	84.5	84.5	83.5	MOISTURE RATIO (%)
		1	ı	1	0	0	0	WET +19mm (%)
		ı	ı	-	0	0	0	WET WET +19mm +37.5mm (%) (%)
		ī	ı	-	0	0	0	APPROX. DEPTH BELOW FINISH LEVEL (mm)

A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

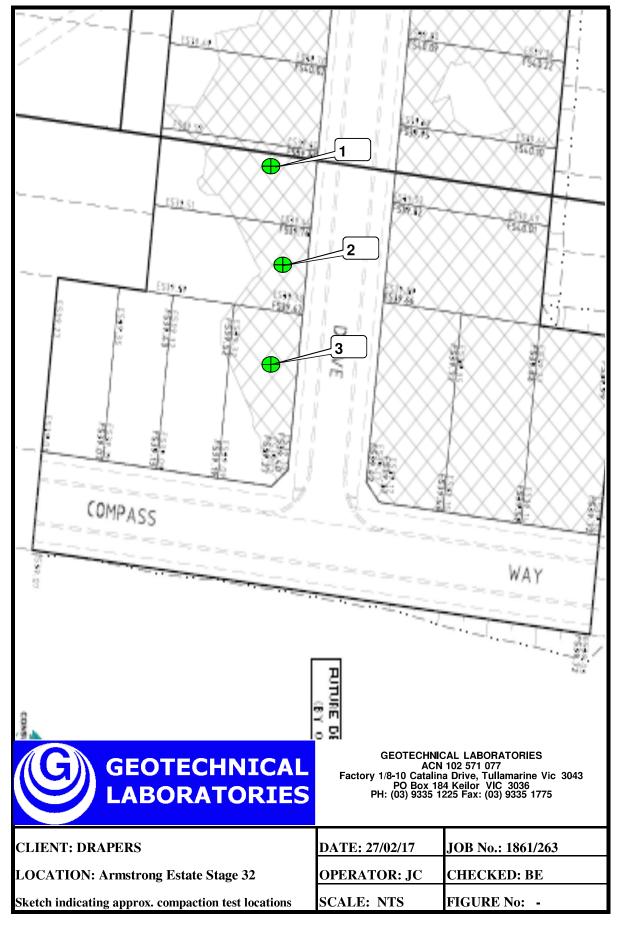
Compaction Test: AS 1289 5.7.1

Soil Layer thickness: 200mm

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1 Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1 NATA of the tests, calibrations and/or measurements included in Accredited for compliance with ISO/IEC 17025. The results

NATA Accredited Laboratory Number 14561

standards. This document may not be reproduced except in


(Approved Signatory)

MICK CROWE

Issue Date: 20/3/2017

Rev: 12 SS3092-1 July 2016

:

REPORT NO: # 1861/264

LOCATION: DRAPERS - Armstrong Estate Stage 32

DATE TEST TEST LOCATION MUM. MUSTURE DENSITY CONTENT			3	Finish Time: 12:32pm	Finish Ti	12:10pm	Start Time: 12:10pm			Part 4.4	Test sites located - Geolab Procedure 4, Part 4.4.	Test si	
TEST TEST LOCATION TEST TEST LOCATION TEST TEST LOCATION TEST TEST LOCATION		- 1	ction.	after com	s sampled	n specimen	Compaction		i	•	e Clay Fill	Onsite	NOTES:
TEST TEST LOCATION	ı		-	ı	ı	ı	ı	-	ı	1		ı	ı
TEST TEST LOCATION	ı		1	-	ı	Í	I	-	Î	ı		I	ı
TEST NUM. TEST LOCATION FIELD NUM. FIELD NUM. FIELD NOTION NUM. FIELD NOSTURE POWD NOSTURE POWD (%) HILF POWD NOSTURE POWD NOSTURE POWD (%) STANDARD PROBE PROME PROME PROME POWD NOSTURE SETTING NOSTURE SETTIN	'		-	-	-	Ī	ı	-	ī	-	locations.	1	ı
TEST NUM. TEST LOCATION FIELD VWET NUM. (t/m³) FIELD DENSITY (t/m³) FIELD DENSITY CONTENT (t/m³) HILF DENSITY POWD DENSITY CONTENT (mm) STANDARD PROBE PROBE PROM OPTIMUM POPTIMUM (mm) VARIATION OPTIMUM PROBE PROM CONTENT (mm) VARIATION MOISTURE (m		0	88.5	3.5 Drier		29.0	1.89	100.5	25.5	1.90	Refer to #1861/265 for	3	28/02/17
TEST TEST LOCATION NUM. TEST LOCATION TEST LOCAT		0	88.5	3.0 Drier		28.0	1.89	101.5	25.0	1.92		2	28/02/17
TEST TEST LOCATION NUM. TEST LOCATION TEST LOCAT		0	87.0	3.5 Drier		27.0	1.85	102.5	23.5	1.90		1	28/02/17
	~ <u>H</u> — I	WE +19m (%)	MOISTURE RATIO (%)	VARIATION FROM OPTIMUM MOISTURE CONTENT (%)		STANDARD OPTIMUM MOISTURE CONTENT (%)		HILF DENSITY RATIO STANDARD (%)	FIELD MOISTURE CONTENT (%)	FIELD WET DENSITY (t/m³)	TEST LOCATION	TEST NUM.	DATE OF TESTS

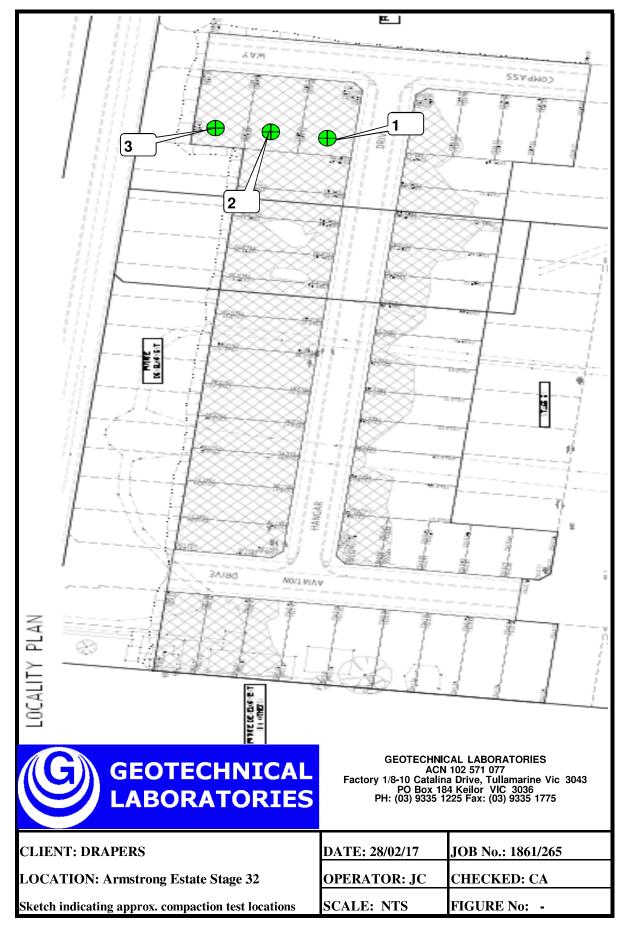
A Hilf Rapid Compaction test was carried out on a sample taken from each Field Density location to obtain the Compaction Parameters tabulated on this Report.

Moisture Content: AS 1289 2.1.1

Compaction Test: AS 1289 5.7.1

Hilf Density Ratio and Hilf Moisture Variation ,Hilf Adjusted (APCWD) & Peak (PCWD) Converted Wet Density AS 1289 5.7.1 NATA of the tests, calibrations and/or measurements included in Accredited for compliance with ISO/IEC 17025. The results standards. This document may not be reproduced except in

NATA Accredited Laboratory Number 14561


(Approved Signatory) MICK CROWE

Issue Date: 20/3/2017

Rev: 12 SS3092-1 July 2016

:

Materials Sampled: AS 1289 1.2.1 Clause 6.4(b) Field Density, Nuclear Gauge: AS 1289 5.8.1

