

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

9th December 2022

Our Reference: 22654:NB1421

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

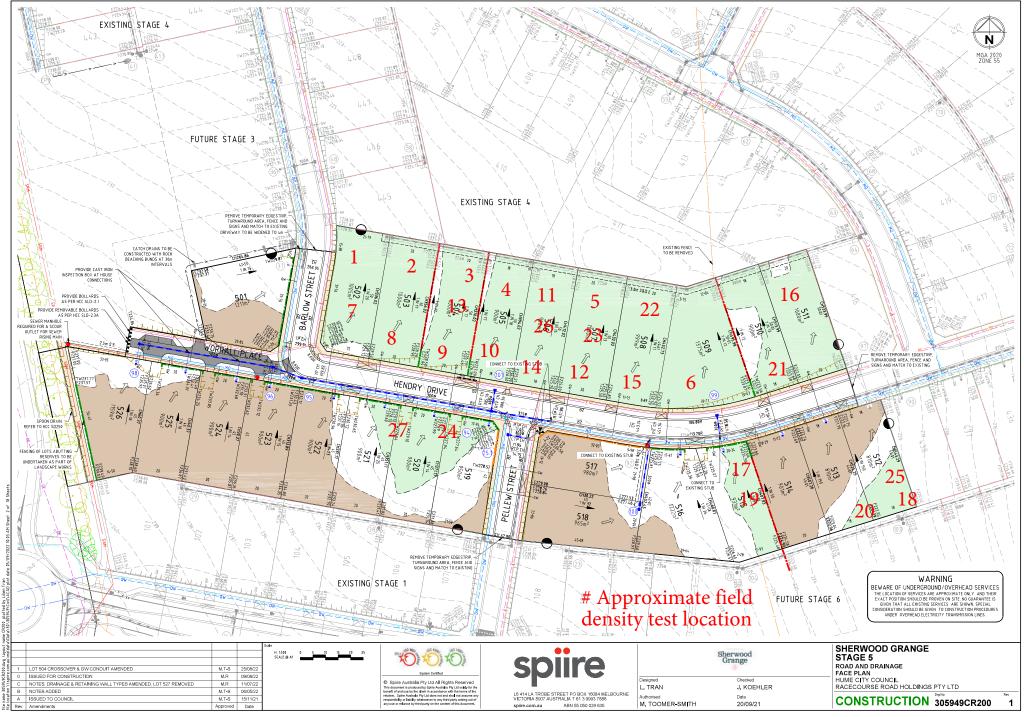
Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING SHERWOOD GRANGE – STAGE 5 (SUNBURY)

Please find attached our Report No's 22654/R001 to 22654/R005 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing was performed in September 2022.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).


We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

	e, Croydon 3136						Date Issued 20/09/2	
Client	WINSLOW CONSTRUC		•	AMPBELLFIE	ELD)		ested by	AM
Project	SHERWOOD GRANGE	- STAG	E 5				ate tested	16/09/22
Location	SUNBURY					CI	hecked by	JHF
Feature	EARTHWORKS		<i>Layer thickness</i> 200 mm				Time:	14:31
	ure AS 1289.2.1.1 & 5.8.	1						
Test No			1	2	3	4	5	6
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
	depth below FSL		475	475	475	475	475	475
Measuremen		mm	175	175	175	175	175	175
Field wet der Field moistur	-	t/m³ %	2.15 21.2	2.16	2.15 20.9	2.12 20.2	2.13	2.08
	ure AS 1289.5.7.1	70	21.2	20.4	20.9	20.2	24.7	24.0
Test No			1	2	3	4	5	6
Compactive e	effort					dard		
Oversize rocl	k retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of ov	versize material	wet	0	0	0	0	0	0
Peak Conver	ted Wet Density	t∕m³	2.20	2.18	2.19	2.18	2.18	2.07
	ak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mo	isture Content	%	22.5	23.0	21.0	22.0	24.5	24.5
Mois	ture Variation From		1.5%	2.5%	0.0%	2.0%	0.0%	0.5%
	um Moisture Content		dry	dry		dry		dry
	and moisture ratio results	relate c			h of test and		I depth of the	
Density Rati		%	98.0	99.0	98.5	97.5	98.0	100.5
Material desc		, 0						

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

					ate tested necked by	AM 19/09/22 JHF
	ture EARTHWORKS Layer thickness 200 mm					
3.1	7			40	44	40
	1	8	9	10	11	12
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
		-		-	-	175
-				_		2.14 19.3
	7	8	9 Stan	10 dard	11	12
mm	19.0	19.0	19.0	19.0	19.0	19.0
wet	0	0	0	0	0	0
t∕m³	2.14	2.21	2.16	2.20	2.20	2.19
t∕m³	-	-	-	-	-	-
%	20.5	22.5	21.5	18.5	21.0	20.5
	0.0%	1.0%	1.5%	0.0%	0.0%	1.0%
		dry	dry			dry
relate c		dry	dry		0.0% I depth of the 99.0	dry
	wet t/m³ t/m³	7 REFER TO FIGURE 1 mm 175 t/m³ 20.1 7 7 mm 19.0 wet 0 t/m³ 2.14	7 8 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 t/m³ 2.17 % 20.1 21.3 mm 19.0 wet 0 0 0 t/m³ 2.14 2.14 2.21	7 8 9 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 175 t/m^3 2.17 2.17 % 20.1 21.3 To 19.0 mm 19.0 19.0 0 0 0 0 0 t/m^3 2.14 2.21 2.16	7 8 9 10 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 175 175 175 t/m^3 2.17 2.17 2.17 2.16 % 20.1 21.3 19.7 18.4 mm 19.0 19.0 19.0 wet 0 0 0 0 wet 0 0 0 0 t/m^3 2.14 2.21 2.16 2.20 t/m^3 - - - -	7891011REFER TO FIGURE 1REFER TO FIGURE 1REFER TO FIGURE 1REFER TO FIGURE 1REFER TO FIGURE 1REFER TO FIGURE 1REFER TO FIGURE 1mm175175175175175 t/m^3 2.172.172.172.162.17%20.121.319.718.421.0Standardmm19.019.019.0wet0000 t/m^3 2.142.212.162.202.20 t/m^3

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

	HNICAL SERVICES e, Croydon 3136					R	ob No eport No ate Issued	22654 22654/R003 28/09/2022	
Client	WINSLOW CONSTRUC	TORS	PTY LTD (CA		LD)		ested by	AM	
Project	SHERWOOD GRANGE		•		,		ate tested	20/09/22	
Location SUNBURY					_	hecked by	JHF		
Feature	EARTHWORKS Layer thickness 200 mm				mm	Time:	13:10		
Test proced	ure AS 1289.2.1.1 & 5.8.	1							
Test No			13	14	15	16	17	18	
Location									
			REFER	REFER	REFER	REFER	REFER	REFER	
			ТО	TO	TO	TO	TO	то	
			FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	
Approvimato	depth below FSL								
Measurement		mm	175	175	175	175	175	175	
Field wet den		t/m³	2.12	2.11	2.04	2.05	2.07	2.05	
Field moisture		%	20.6	19.5	19.8	21.1	20.4	18.3	
Test proced	ure AS 1289.5.7.1								
Test No			13	14	15	16	17	18	
Compactive e	effort				Stan	dard			
Oversize rock	c retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0	
Percent of ov	ersize material	wet	0	0	0	0	0	0	
	ted Wet Density	t∕m³	2.13	2.12	2.08	2.09	2.08	2.08	
Peak Convert			-						
Peak Convert Adjusted Pea	k Converted Wet Density	t/m ³	-	-	-	-	-	-	

Density Ratio (R _{HD}) % 99.5 100.0 98.5 98.5 99.5 99.0								
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer								
Optimum Moisture Content			dry	dry	dry	dry		
Moisture Variation From	0.0%	0.0%	1.5%	1.5%	1.5%	1.0%		

Material description

No 13 - 18 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	22654 22654/R004
6 - 8 Rose Aven	ue, Croydon 3136	Date Issued	29/09/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM
Project	SHERWOOD GRANGE - STAGE 5	Date tested	21/09/22
Location	SUNBURY	Checked by	JHF

Feature EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 14:16
--------------------	-----------------	--------	--------------------

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		19	20	21	22	23	24
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1					
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.91	1.91	1.93	1.93	1.92	1.93
Field moisture content	%	19.5	17.5	20.9	16.7	20.0	19.6
Test procedure AS 1289.5.7.1 Test No		19	20	21	22	23	24
Compactive effort				Star	Idard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.95	1.98	1.98	2.00	2.01	2.02
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	20.5	19.0	22.0	18.5	21.0	20.5
	_						
Moisture Variation From		1.0%	1.5%	1.0%	1.5%	1.0%	1.0%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
density and moisture ratio results	relate c		,	,	,	· · ·	
•		-				•	
Density Ratio (R _{HD})	%	97.5	96.5	97.5	96.5	96.0	95.5

Material description

No 19 - 24 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTE	CHNICAL SERVICES	Job No Report No	22654 22654/R005
6 - 8 Rose Aven	ue, Croydon 3136	Date Issued	19/10/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AM
Project	SHERWOOD GRANGE - STAGE 5	Date tested	27/09/22
Location	SUNBURY	Checked by	JHF

Feature EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 12:15
--------------------	-----------------	--------	--------------------

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		25	26	27	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL					 	 	
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.97	1.97	2.05	-	-	-
Field moisture content	%	19.8	19.9	19.9	-	-	-
Test No Compactive effort		25	26	27 Stan	- ndard	-	-
Compactive effort			·	Star	Idard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	<u> </u>
Peak Converted Wet Density	t∕m³	1.99	1.99	2.08		-	-
Adjusted Peak Converted Wet Density	t∕m³	<u> </u>	-	<u> </u>	<u> </u>	-	<u> </u>
Optimum Moisture Content	%	22.0	22.0	21.5	-	-	-
Moisture Variation From		2.0%	2.0%	1.5%	-	-	-
Optimum Moisture Content		dry	dry	dry	l		
density and moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the ful	l depth of the	e layer
		99.0	99.0	98.5			r

Material description

No 25 - 27 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry