

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

21st June 2023

Our Reference: 23215:NB1592

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING ALAMORA – STAGE 8 (TARNEIT)

Please find attached our Report No's 23215/R001 to 23215/R012 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in March 2023 and was completed in May 2023.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

VIL GEOTECH 8 Rose Avenue Client Project Location	INICAL SERVICES , Croydon 3136 WINSLOW CONSTRUC ALAMORA - STAGE 8 TARNEIT	TORS	PTY LTD (CA	AMPBELLFIE	ELD)		Report No Date Issued Tested by Date tested Checked by	23215/R00 16/03/23 JB 07/03/23 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	e: 10:00
Test procedu	ıre AS 1289.2.1.1 & 5.8.	1						
Test No				2	3	-		
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate c	depth below FSL							+
Measurement	depth	mm	175	175	175	-	-	-
Field wet dens	eld wet density t/m³		1.87	1.87	1.84	-	-	-
Field moisture	content	%	24.9	27.2	25.6		-	-
								
Test proceau	Ire AS 1289.5.7.1		1					
Test ivo	ffe at		1	2	3 Ston	- dard		-
Compactive en	ITOR	mm	10.0	10.0		Jaru	<u> </u>	
Dercent of over	Telameu un sieve	IIIII wot	19.0	19.0	19.0		<u> </u>	+
Percent or ove	SIZE Malenai	1/m3	1 00	1 01	1 87		<u> </u>	
Adjusted Peak	Converted Wet Density	t/m3	1.30	1.31	1.07			
Ontimum Mois	sture Content	%	26.5	29.5	25.5			
		70	20.0	20.0	20.0			
Moistı Optimu	ure Variation From Im Moisture Content		1.5% dry	2.0% dry	0.0%	-	-	-
density a	and moisture ratio results i	relate c	only to the so	il to the dept	h of test and i	not to the	full depth of t	ne layer
	$\overline{(R_{HD})}$	%	98.5	97.5	98.5	-	<u> </u>	-

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

	ORS	PTY LTD (C/		=LD)		Job No Report No Date Issued Tested by	23215 23215/R00 16/03/23 JB
Project ALAMORA - STAGE 8 Location TARNEIT						Date tested 08/03/2 Checked by JHF	
Feature EARTHWORKS		Lay	er thickness	200 r	nm	Time	ə: 13:00
Test procedure AS 1289.2.1.1 & 5.8.1							
Test No		4	5	6	-		-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							1
Measurement depth	тт	175	175	175	-	_	<u> </u>
Field wet density	t/m³	1.98	1.95	2.00	-	-	
Field moisture content	%	26.7	27.4	24.1	-	-	-
T - 1							
Test procedure AS 1269.5.7.1		4				<u> </u>	<u> </u>
lest NO		4	C	0 Stan(- 	-	-
	~~~~~	10.0	10.0				
Oversize rock retained on sieve	min	19.0	19.0	19.0	-		
Percent of oversize material	₩ <del>U</del> 1/m3	0 2 00	1 00	2.05	-		
Adjusted Deak Converted Wet Density	l/111- +/m3	2.00	1.33	2.00	-		
Adjusteu Peak Converteu wei Density	VIII~ %	- 29.5	- 29.5	26.0	-		+
Oplimum moisture Content	70	20.0	20.0	20.0			
Moisture Variation From		2.5%	2.0%	2 0%		<u> </u>	
		drv	drv	drv			
Ontimum Moisture Content	late C	nly to the so	il to the dept	h of test and r	not to the	- full depth of t	he laver
Optimum Moisture Content	luic .						
Optimum Moisture Content density and moisture ratio results re	07		non		-		-



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



Feature       EARTHWORK         Test procedure AS 1289.2.       Test No.	S	Laye	er thickness	200 m			
Feature       EARTHWORK         Test procedure AS 1289.2.       Tost No.	S	Lay	er thickness	200 m	wo.		
Test procedure AS 1289.2.						l ime.	: 13:00
Tost No	1.1 & 5.8.1						
restino		7	8	9	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
						-	-
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t/m³	1.88	1.97	1.87	-	-	-
Field moisture content	%	20.9	19.6	19.4	-	-	-
Test procedure AS 1289.5.	7.1					<del></del>	
		/	8	9 Ctan d	-	-	-
		10.0	10.0	Stand	ard	<u> </u>	
Oversize rock retained on siev		19.0	19.0	19.0			-
Percent of oversize material	t/m3	1.01	2.01	1 01			
Adjusted Peak Converted Wei	t Density t/m³	-	2.01	-			
Optimum Moisture Content	Wensity Unit	23.5	22.0	22.0		-	-
	,,,					<u> </u>	
Maiatura Variation Erc		2 50/	2 50/	2.5%		<del></del>	
	iiii tont	2.070 drv	2.070 drv	2.5%	-	-	-
dopsity and moisture con	tio roculte rolato e	uly alv to the co	il to the depti	ury h of tost and n	ot to the fu	l dopth of th	
Density Ratio (R _{HD} )	%	98.5	98.0	98.0		-	-



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



<b>IVIL GEOTEC</b> - 8 Rose Avenu	HNICAL SERVICES e, Croydon 3136					J F L	lob No Report No Date Issued	23215 23215/R004 23/03/23
Client Project Location	WINSLOW CONSTRUC ALAMORA - STAGE 8 TARNEIT	TORS	PTY LTD (CA	AMPBELLFIE	LD)	T L C	Tested by Date tested Checked by	JB 14/03/23 JHF
Feature	EARTHWORKS		Lay	er thickness	200	mm	Time	: 13:00
Test proced	ure AS 1289.2.1.1 & 5.8.	1						
Test No			10	11	12	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL							
Measuremen	t depth	тт	175	175	175	-	-	-
Field wet den	osity	t/m³	1.87	1.89	1.84	-	-	
Test proced Test No	ure AS 1289.5.7.1		10	11	12 Stan	-	-	-
Oversize rock	k retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of ov	ersize material	wet	0	0	0	-	-	-
Peak Conver	ted Wet Density	t∕m³	1.89	1.92	1.88	-	-	-
Adjusted Pea	k Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Mol	isture Content	%	22.5	21.5	23.5	-	-	-
Mois Optim	ture Variation From um Moisture Content		2.5% dry	2.0% dry	2.5% dry	-	-	-
density	and moisture ratio results	relate c	only to the so	il to the dept	h of test and	not to the f	ull depth of th	ne layer
Density Rati	o(R _{HD} )	%	99.0	98.5	98.0	-	-	-
density Density Rati Material desc No 10 - 1	and moisture ratio results o (R _{HD} ) pription 2 Clay Fill	relate c	only to the so	il to the depti	h of test and <b>98.0</b>	not to the f	ull depth of th	ne layer -



Approved Signatory : Justin Fry



8 Rose Avenu Client	HNICAL SERVICES e, Croydon 3136 WINSI OW CONSTRUC	TORS	PTY LTD (C/		רח ו=		Report No Date Issued	23215/R00 23/03/23 .IB
Project Location	ALAMORA - STAGE 8 TARNEIT						Date tested Checked by	15/03/23 JHF
Feature	EARTHWORKS		Lay	er thickness	200 m	m	Time:	: 09:00
Test proced	lure AS 1289.2.1.1 & 5.8.	1						
Test No			13	14	15	-	-	
_ocation			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	_		
\pproximate	depth below FSL							
Measuremen	t depth	mm	175	175	175	-	-	-
Field wet den	isity	t∕m³	1.82	1.83	1.81	-	-	-
Test proced	ure AS 1289.5.7.1		13	14	   15	-	—— ——	 T
					Standa	ard		<u> </u>
Compactive e	2110.10		19.0	19.0	19.0	-	-	-
Compactive e Oversize rock	<pre>     retained on sieve </pre>	mm	13.0	· -			<u> </u>	+
Compactive e Oversize rock Percent of ov	k retained on sieve 'ersize material	mm wet	0	0	0	-	-	-
Compactive e Oversize rocl Percent of ov Peak Conver	k retained on sieve ′ersize material ted Wet Density	mm wet t/m³	0	0 1.88	0 1.83	-		-
Compactive of Oversize rock Percent of ov Peak Conver Adjusted Pea	k retained on sieve rersize material ted Wet Density rk Converted Wet Density	mm wet t/m ³ t/m ³	0 1.86 -	0 1.88 -	0 1.83 -	-	-	- - -
Compactive ( Oversize rock Percent of ov Peak Conver Adjusted Pea Optimum Mo	k retained on sieve rersize material ted Wet Density rk Converted Wet Density isture Content	mm wet t/m ³ t/m ³ %	0 1.86 - 23.0	0 1.88 - 21.5	0 1.83 - 24.0	-		- - - -
Compactive of Oversize rock Percent of ov Peak Conver Adjusted Pea Optimum Mod	k retained on sieve versize material ted Wet Density ik Converted Wet Density isture Content	mm wet t/m ³ t/m ³ %	0 1.86 - 23.0	0 1.88 - 21.5	0 1.83 - 24.0	-		
Compactive e Oversize roci Percent of ov Peak Conver Adjusted Pea Optimum Moi Moise	k retained on sieve rersize material ted Wet Density ik Converted Wet Density isture Content	mm wet t/m ³ t/m ³ %	0 1.86 	0 1.88 - 21.5 2.0%	0 1.83 - 24.0 2.5% dr/	- - - -		
Compactive e Oversize roci Percent of ov Peak Conver Adjusted Pea Optimum Moi Moise Optimu density	k retained on sieve versize material ted Wet Density tk Converted Wet Density isture Content ture Variation From um Moisture Content	mm wet t/m ³ t/m ³ %	0 1.86 - 23.0 2.0% dry unly to the so	0 1.88 - 21.5 2.0% dry il to the dept	0 1.83 - 24.0 2.5% dry b of test and no	- - - -	- - - - - - -	- - - - -



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



8 Rose Avenu Client Project Location	e, Croydon 3136 WINSLOW CONSTRUC ALAMORA - STAGE 8 TARNEIT	TORS	PTY LTD (CA	AMPBELLFIE	ELD)		Date Issued Tested by Date tested Checked by	23/03/23 JB 16/03/23 JHF
Feature	EARTHWORKS		Lay	er thickness	200 m	im	Time	: 07:00
Test proced	lure AS 1289.2.1.1 & 5.8	.1						
Test No		!	16	1/	18	-	-	
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL						<u> </u>	
Measuremen	t depth	mm	175	175	175	-	-	-
Field wet den	isity	t/m³	1.83	1.84	1.84	-		-
Test proced Test No	ure AS 1289.5.7.1		16	17	18 Stond	al	-	-
Compactive e	HIOR k ratained on sieve		10.0	10.0		aro _	<u> </u>	Τ
Percent of ov	reize material	wet	0	0	0	-	<del></del>	+
	ted Wet Density	t/m ³	1.87	1.86	1.89	-		-
Peak Conver	ak Converted Wet Density	t/m³	-	-	-	-	<u> </u>	
Peak Conver Adjusted <u>P</u> ea			26.5	23.5	24.5	-	-	-
Peak Conver Adjusted Pea Optimum Mo	isture Content	%	20.0					
Peak Conver Adjusted Pea Optimum Mo	isture Content	<u>%</u>	20.0	2 50/	2.00/		<del></del>	<del></del>
Peak Conver Adjusted Pea Optimum Mo Optimum Moist	isture Content fure Variation From		2.5%	2.5%	2.0%	-	-	<u> </u>
Peak Conver Adjusted Pea Optimum Mo Moise Moise Optim density	isture Content ture Variation From um Moisture Content and moisture ratio results	%	2.5% dry only to the so	2.5% dry il to the depti	2.0% dry h of test and no	- ot to the	- full depth of th	- ne layer



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



8 Rose Avenue	Croydon 3136						Date Issued	28/03/23
Client Project Locat <u>ion</u>	ALAMORA - STAGE 8	TORS I	FIT LID (CAMFBELLFIELD)				Tested by Date tested Chec <u>ked by</u>	JB 22/03/23 JH <u>F</u>
Feature	EARTHWORKS		Lay	er thickness	200 m	۱m	Time.	: 13:00
Test procedu	ıre AS 1289.2.1.1 & 5.8.	1	10	20	21		<del></del>	<del>.</del>
lest NO			19	20	21			
LOCation			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate c	depth below FSL				<u> </u>		<u> </u>	
Measurement	depth	mm	175	175	175		-	-
Field wet dens	sity	t∕m³	1.94	1.98	1.92	_	-	-
Test procedu	ure AS 1289.5.7.1		£1.1		20.0		I	
Test No			19	20	21	-	-	-
Compactive en	ffort		10.0	10.0	Standa	ard	<del></del>	
Oversize rock	retained on sieve	mm	19.0	19.0	19.0	-		-
Percent of ove	ersize material	Wet	1.00	U 1 09	0	-		-
Deals Convert	ed wet Density	1/111°	1.99	1.90	1.97	-	<u> </u>	-
Peak Convert	Converted Wet Density			-				<u> </u>
Peak Convert Adjusted Peak Optimum Mois	k Converted Wet Density sture Content	<i>VIII</i> ° %	30.0	29.5	29.0	-	-	-
Peak Convert Adjusted Peak Optimum Mois	k Converted Wet Density sture Content	<u> </u>	30.0	29.5	29.0			<u> </u>
Peak Convert Adjusted Peal Optimum Mois Moistu	k Converted Wet Density sture Content ure Variation From	<u> </u>	30.0 2.0%	29.5 2.0%	29.0	-	 	<u> </u>
Peak Convert Adjusted Peak Optimum Mois Moist Optimu density	k Converted Wet Density sture Content ure Variation From um Moisture Content	viii ^e %	30.0 2.0% dry	29.5 2.0% dry il to the dept	29.0 2.5% dry	- -	-	- -



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



/ORA - STAGE 8 NEIT FHWORKS	1	Lay	er thickness	200 m	  m	rate tested hecked by Time:	27/03/23 JHF 13:00
INCRA - STAGE 6 NEIT INWORKS		Lay	er thickness	200 m	m	ate testeu hecked by Time:	27/03/23 JHF 13:00
THWORKS		Lay	er thickness	200 m	'm	Time:	13:00
<b>ГНWORKS</b> 1289.2.1.1 & 5.8.	1	Lay	er thickness	200 m	m	Time:	13:00
⁻ 1289.2.1.1 & 5.8.	1						
	,						
		22	23	24	-	-	-
	ļ						
	ļ	REFER	REFER	REFER			
	ļ						
	ł	FIGURE 1	FIGURE 1	FIGURE 1			
elow FSL				·		<u> </u>	<u> </u>
		175	175	175	-	-	-
	t/m³	1.85	1.82	1.84	-	-	-
nt	%	25.5	26.9	27.4	-	-	-
1289.5.7.1							
		22	23	24	-	- 1	- 1
			<u> </u>	Standa	ard		
ed on siev <u>e</u>	тт	19.0	19.0	19.0		-	-
naterial	wet	0	0	0	-	-	-
t Density	t∕m³	1.88	1.87	1.87	-	-	-
erted Wet Density	t∕m³	-	-	-	-	-	-
content	%	28.0	29.0	28.0	-	-	-
riation From		2.5%	2.0%	0.5%	-	-	-
sture Content		dry	dry	dry			
oisture ratio results	relate c	only to the so	il to the dept	h of test and no	ot to the fu	Ill depth of th	e layer
n )	%	98.5	97.5	98.5	-	- 1	-
	elow FSL nt 1289.5.7.1 ed on sieve material t Density rerted Wet Density content riation From isture Content oisture ratio results	Delow FSL   t/m³   nt   %   1289.5.7.1   ed on sieve   material   wet   t Density   t/m³   'erted Wet Density   'm³   'erted Wet Density   'erted Wet Density   'm³   'erted Wet Density   'erted Wet Density	FIGURE 1FIGURE 1FIGURE 1 $pelow FSL$ $t/m^3$ 1.85 $nt$ % 25.5 $1289.5.7.1$ $22$ $ed on sieve mm 19.0$ $material wet 0$ $t Density t/m^3 1.88$ $rerted Wet Density t/m^3 - 200content % 28.0riation From 2.5\%sture Content % 28.0riation From 2.5\%sture Content % 98.5$	FIGURE 1       FIGURE 1         FIGURE 1       FIGURE 1         pelow FSL       175         175       175         175       175         175       175         185       1.82         nt       %         25.5       26.9         1289.5.7.1       22         22       23         ed on sieve       mm         19.0       19.0         material       wet         0       0         t Density       t/m³         erted Wet Density       t/m³         28.0       29.0         riation From       2.5%         isture Content       dry         dry       dry         oisture ratio results relate only to the soil to the dept         m       %       98.5         97.5	FIGURE 1       FIGURE 1       FIGURE 1       FIGURE 1         pelow FSL $mm$ 175       175 $t/m^3$ 1.85       1.82       1.84         nt       %       25.5       26.9       27.4         \$ 1289.5.7.1       22       23       24         Standa         ed on sieve mm       19.0       19.0         material wet 0       0       0         tration Erom $200$ 28.0       29.0       28.0         riation From       2.5%       2.0%       0.5%         struct or results relate only to the soil to the depth of test and no to the point of test and no to	FIGURE 1       FIGURE 1       FIGURE 1       FIGURE 1         pelow FSL $mm$ 175       175 $ t/m^3$ 1.85       1.82       1.84 $ nt$ %       25.5       26.9       27.4 $-$ S 1289.5.7.1 $22$ 23       24 $ material$ wet       0       0 $-$ material       wet       0       0 $-$ rerted Wet Density $t/m^3$ $  -$ Sontent       %       28.0       29.0       28.0 $-$ riation From $2.5\%$ $2.0\%$ $0.5\%$ $-$ riation From $2.5\%$ $2.0\%$ $0.5\%$ $ value$ $dry$ $dry$ $dry$ $dry$ $dry$ $dry$ $riation From       2.5\% 2.0\% 0.5\% -<$	FIGURE 1       FIGURE 1       FIGURE 1       FIGURE 1         pelow FSL       175       175       - $t/m^3$ 1.85       1.82       1.84       -         nt       %       25.5       26.9       27.4       -         1289.5.7.1       22       23       24       -       -         1289.5.7.1       22       23       24       -       -         standard       -       -       -       -       -         material       wet       0       0       0       -       -         rested Wet Density       t/m³       1.88       1.87       1.87       -       -         riation From       2.5%       2.0%       0.5%       -       -       -         riation From       2.5%       2.0%       0.5%       -       -       -         sture Content       dry       dry       dry       dry       -       -       - $p_1$ %       98.5       97.5       98.5       -       -       -



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	23215 23215/R009
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	01/05/23
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	JB
Project	ALAMORA - STAGE 8	Date tested	14/04/23
Location	TARNEIT	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

*Time:* 07:00

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		25	26	27	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.95	1.98	1.98	-	-	-
Field moisture content	%	24.1	24.8	24.2	-	-	-

	25	26	27	-	-	-			
	Standard								
тт	19.0	19.0	19.0	-	-	-			
wet	0	0	0	-	-	-			
t∕m³	1.98	2.03	2.01	-	-	-			
t∕m³	-	-	-	-	-	-			
%	26.5	27.0	27.0	-	-	-			
	mm wet t/m ³ t/m ³	25           mm         19.0           wet         0           t/m³         1.98           t/m³         -           %         26.5	25         26           mm         19.0         19.0           wet         0         0           t/m³         1.98         2.03           t/m³         -         -           %         26.5         27.0	25         26         27           Stan           mm         19.0         19.0           wet         0         0         0           t/m³         1.98         2.03         2.01           t/m³         -         -         -           %         26.5         27.0         27.0	25         26         27         -           Standard           mm         19.0         19.0         -           wet         0         0         0         -           t/m³         1.98         2.03         2.01         -           %         26.5         27.0         27.0         -	25         26         27         -         -           Standard           mm         19.0         19.0         19.0         -         -           wet         0         0         0         -         -         -           t/m³         1.98         2.03         2.01         -         -         -           t/m³         -         -         -         -         -         -         -           %         26.5         27.0         27.0         -         -         -         -			

Moisture Variation From	2.5%	2.0%	2.5%	-	-	-
Optimum Moisture Content	dry	dry	dry			
density and moisture ratio results relate of	only to the so	il to the depth	n of test and	not to the full	depth of the	layer
Density Ratio (R _{HD} ) %	98.5	97.5	98.0	-	-	-

Material description

No 25 - 27 Clay Fill



NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13



# 

Las	CO	WPACTIO	N ASSESS					
IVIL GEOTECHNICAL SERVICES						Job No Report No	23215 23215/R010	
i - 8 Rose Avenue, Croydon 3136						Date Issued	01/05/23	
Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)							JB	
Project ALAMORA - STAGE 8						Date tested	19/04/23	
Location TARNEIT						Checked by	JHF	
Feature EARTHWORKS		Lay	er thickness	mm	<i>Time:</i> 07:00			
Test procedure AS 1289.2.1.1 & 5	5.8.1							
Test No		28	29	30	-	-	-	
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate depth below FSL								
Measurement depth	mm	175	175	175	-	-	-	
Field wet density	t∕m³	1.91	1.92	1.92	-	-	-	
Field moisture content	%	27.3	25.5	27.1	-	-	-	
Test procedure AS 1289.5.7.1								
Test No		28	29	30	-	-	-	
Compactive effort				Stan	dard			
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-	
Percent of oversize material	wet	0	0	0	-	-	-	
Peak Converted Wet Density	t∕m³	1.94	1.95	1.93	-	-	-	
Adjusted Peak Converted Wet Densit	y t/m ³	-	-	-	-	-	-	

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer										
density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer										

27.0

29.0

-

-

_

27.0

%

Material description

No 28 - 30 Clay Fill

Optimum Moisture Content



NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



8 Rose Avenue, ( Client \ Project / Location	Croydon 3136 MINSLOW CONSTRUC ALAMORA - STAGE 8 FARNEIT	PTY LTD (CAMPBELLFIELD)				Date Issued Tested by Date tested Checked by	31/05/23 JB 03/05/23 JHF		
Feature I	EARTHWORKS	Layer thickness 200 mm				าฑ	<i>Time:</i> 09:00		
Test procedure	e AS 1289.2.1.1 & 5.8.	1	21	20					
lest NO			31	<u>عد</u>	33	-			
LOCation			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate de	pth below FSL								
Measurement d	epth	mm	175	175	175		-	-	
Field wet densit	У	t/m³	2.00	2.03	2.01	-	-		
Test procedure Test No Compactive effe	∋ AS 1289.5.7.1		31	32	33 Stand	 ard	-	-	
Oversize rock re	etained on sieve	mm	19.0	19.0	19.0		-		
	size material	wet	0	0	0	-	-	-	
Percent of over	l Wet Density	t∕m³	2.03	2.06	2.03		-	-	
Percent of over. Peak Converted		t/m³	-	-	-		-	-	
Percent of over Peak Converted Adjusted Peak (	Converted Wet Density		00.0	07.5			-		
Percent of over Peak Converted Adjusted Peak ( Optimum Moistu	Converted Wet Density .re Content	%	29.0	27.5	28.5				
Percent of over Peak Converted Adjusted Peak ( Optimum Moistu Moisture Optimum	Converted Wet Density ure Content e Variation From Moisture Content	%	29.0 2.5% dry	27.5 2.0% dry	28.5 2.5% dry		-		
Percent of over Peak Converted Adjusted Peak ( Optimum Moistu Moistur Optimum density ar	Converted Wet Density ure Content e Variation From Moisture Content Id moisture ratio results	% relate c	29.0 2.5% dry only to the so	27.5 2.0% dry il to the depti	28.5 2.5% dry h of test and no	- ot to the	full depth of th	- ne layer	



NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry



- 8 Rose Avenue, Croydon 3136							Report No Date Issued	23215 23215/R012 31/05/23	
Client Project Location	WINSLOW CONSTRUC ALAMORA - STAGE 8 TARNEIT	YTY LTD (CAMPBELLFIELD)				Tested by Date tested Checked by	JB 19/05/23 JHF		
Feature	EARTHWORKS		Layer thickness 200 mm				<i>Time:</i> 08:00		
Test proced	dure AS 1289.2.1.1 & 5.8.	1							
Test No			34	35	36	-	-	-	
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate	e depth below FSL								
Measuremer	nt depth	тт	175	175	175	-	-	-	
Field wet der	nsity	t/m³	2.06	2.04	2.05		-	-	
riela moistui	re content	%	23.4	26.0	24.3	-	-	-	
Test proced	dure AS 1289.5.7.1		24	25	26				
Compactive	offort		- 34			- dard	-	-	
Oversize roc	k retained on sieve	mm	19.0	19.0	19 0	-	-		
Percent of or	versize material	wet	0	0	0	-	-	-	
Peak Conve	rted Wet Density	t/m³	2.07	2.05	2.07	-	-	-	
Adjusted Pea	ak Converted Wet Density	t∕m³	-	-	-	-	-	-	
Optimum Mo	pisture Content	%	26.0	28.5	27.0	-	-	-	
Mois	sture Variation From		2.5%	2.5%	2.5%	-	-	-	
Optim	num Moisture Content		dry	dry	dry				
density	y and moisture ratio results	relate c	only to the so	I to the dept	h of test and	not to the	e full depth of	the layer	
Density Rat	io (R _{HD} )	%	99.5	99.5	99.0	-	-	-	
Material desc	cription								
No 34 - 3	36 Clay Fill								



AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry