

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon 3136
 Report No
 22653/R001

 Date Issued
 26/09/2022

 Client
 WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)
 Tested by
 AM

 Project
 REDSTONE ESTATE - STAGE 8
 Date tested
 16/09/22

 Location
 SUNBURY
 Checked by
 JHF

Feature CONSTRUCTION LAYER Layer thickness 150 mm Time: 11:27

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		1	2	3	4	5	-
Location		Sacre	d Drive	Zoogie Road	Notch	Road	
		710 1.8 north of kerb	760 1.8 south of kerb	20 1.8 east of kerb	50 1.8 east of kerb	100 1.8 west of kerb	
Approximate depth below FSL							
Measurement depth	mm	125	125	125	125	125	-
Field wet density	t/m³	1.78	1.76	1.76	1.74	1.75	-
Field moisture content	%	22.6	23.3	22.2	25.3	22.2	-

Test procedure AS 1289.5.7.1

1001 p1000 da10 110 1200101111							
Test No		1	2	3	4	5	-
Compactive effort				Star	ndard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	-
Percent of oversize material	wet	0	0	0	0	0	-
Peak Converted Wet Density	t/m³	1.77	1.75	1.76	1.73	1.75	•
Adjusted Peak Converted Wet Density	t/m³	ı	-	-	-	-	-
Optimum Moisture Content	%	23.5	24.0	23.0	26.5	23.0	-

Moisture Variation From	1.0%	0.5%	1.0%	1.0%	1.0%	-
Optimum Moisture Content	dry	dry	dry	dry	dry	

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer

|--|

Material description

No 1 - 5 40mm Type A - Masalkovski Quarries

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon 3136
 Report No
 22653/R002

 Date Issued
 27/09/2022

ClientWINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)Tested byAMProjectREDSTONE ESTATE - STAGE 8Date tested16/09/22LocationSUNBURYChecked byJHF

Feature CAPPING Layer thickness 200 / 160 mm Time: 11:32

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		6	7	8	9	10	-
Location		Sacre	d Drive	Zoogie Road	Notch	Road	
		710 1.8 north of kerb	760 1.8 south of kerb	20 1.8 east of kerb	50 1.8 west of kerb	100 1.8 east of kerb	
Approximate depth below FSL							
Measurement depth	mm	175	175	125	125	125	-
Field wet density	t/m³	1.91	2.05	1.96	1.90	1.90	-
Field moisture content	%	18.4	21.5	18.8	20.7	17.4	-

Test procedure AS 1289.5.7.1

Test No		6	7	8	9	10	-
Compactive effort				Stan	dard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	-
Percent of oversize material	wet	0	0	0	0	0	-
Peak Converted Wet Density	t/m³	1.90	2.04	1.95	1.90	1.90	-
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moisture Content	%	19.5	22.0	19.5	21.5	18.5	-

Moisture Variation From	1.0%	0.5%	0.5%	1.0%	1.0%	-
Optimum Moisture Content	dry	dry	dry	dry	dry	

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer

Density Ratio (R _{HD})	%	100.5	101.0	100.5	100.0	100.0	-

Material description

No 6 - 10 40mm Type A - Masalkovski Quarries

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon, Vic 3136
 Report No
 22653/R003

 Date Issued
 03/10/2022

 Client
 WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)
 Tested by
 AM

 Project
 REDSTONE ESTATE - STAGE 8
 Date tested
 03/10/22

 Location
 SUNBURY
 Checked by
 JHF

FeatureCLASS 3Layer thickness100 / 160 mmTime:11:50:48

Test No		11	12	13			
Location		Zoogie	Sacred	d Drive			
		Road					
C	Chainage	20	710	760			
	Offset	1.8	1.7	1.8			
		east	north	south			
		of kerb	of kerb	of kerb			
Approximate depth from F.S.L.	т						
Measurement depth	mm	75	150	150	<u></u>	Ì	
Field wet density	t/m³	2.38	2.32	2.34			
Field dry density	t/m³	2.26	2.22	2.23			
Field moisture content	%	5.0	5.0	5.0			
Compactive effort Maximum Dry Density Optimum Moisture Content	t/m³			2.2	IFIED 26		
	%			5.	.5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	mm	19.0	19.0	19.0	5	<u> </u>	
Test procedure AS 1289.5.4.1		19.0	19.0		5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	mm	19.0 - -	19.0		.5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	mm wet	-	19.0		5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	mm wet dry t/m³	-	-	19.0 - -	5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	mm wet dry t/m³	- - -	- - -	19.0 - - - -	5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	mm wet dry t/m³	-		19.0 - -	5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m³ %	- - -	- - -	19.0 - - - -	5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet dry t/m³ %	- - - - 0.5% dry	- - - - 1.0% dry	19.0 - - - - - 1.0% dry	5		
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	mm wet dry t/m³ %	- - - - 0.5% dry	- - - - 1.0% dry	19.0 - - - - 1.0% dry		Ill depth of t	he laver

A581ASSIGNED V1.13 MAR 13

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon 3136
 Report No
 22653/R004

 Date Issued
 07/10/2022

ClientWINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)Tested byAMProjectREDSTONE ESTATE - STAGE 8Date tested04/10/22LocationSUNBURYChecked byJHF

Feature CONSTRUCTION LAYER Layer thickness 150 mm Time: 10:13

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		14	15	-	-	-	-
Location		Bluey (Crescent				
		60 1.8 north of kerb	110 1.8 south of kerb				
Approximate depth below FSL							
Measurement depth	mm	125	125	-	-	-	-
Field wet density	t/m³	1.81	1.88	-	-	-	-
Field moisture content	%	27.8	28.3	-	-	-	-

Test procedure AS 1289.5.7.1

Test No		14	15	-	-	-	-
Compactive effort				Stan	dard		
Oversize rock retained on sieve	mm	19.0	19.0	-	-	-	-
Percent of oversize material	wet	0	0	-	-	-	-
Peak Converted Wet Density	t/m³	1.81	1.86	-	-	-	-
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moisture Content	%	29.0	29.5	-	-	-	-

Moisture Variation From	1.0%	1.0%	-	-	-	-
Optimum Moisture Content	dry	dry				

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer

Density Ratio (R _{HD})	%	100.0	101.0	-	-	-	-

Material description

No 14 - 15 40mm Type A - Masallkovski Quarries

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon 3136
 Report No
 22653/R005

 Date Issued
 07/10/2022

ClientWINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)Tested byAMProjectREDSTONE ESTATE - STAGE 8Date tested05/10/22LocationSUNBURYChecked byJHF

Feature CAPPING Layer thickness 160 mm Time: 10:15

Test procedure AS	1289.2.1.1 & 5.8.1
-------------------	--------------------

Test No		16	17	-	-	-	-
Location		Bluey C	Crescent				
		60 1.8 north of kerb	110 1.7 south of kerb				
Approximate depth below FSL							
Measurement depth	mm	125	125	-	-	-	-
Field wet density	t/m³	1.82	1.83	-	-	-	-
Field moisture content	%	28.9	29.8	-	-	-	-

Test procedure AS 1289.5.7.1

Test No		16	17	-	-	-	1
Compactive effort				Stan	dard		
Oversize rock retained on sieve	mm	19.0	19.0	-	-	-	-
Percent of oversize material	wet	0	0	-	-	-	-
Peak Converted Wet Density	t/m³	1.82	1.82	-	-	-	-
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moisture Content	%	30.0	30.5	-	-	-	-

Moisture Variation From	1.0%	0.5%	-	-	-	-
Optimum Moisture Content	dry	dry				

density and moisture ratio results relate only to the soil to the depth of test and not to the full depth of the layer

Density Ratio (R _{HD})	%	100.0	100.5	-	-	-	-

Material description

No 16 - 17 40mm Type A - Masallkovski Quarries

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon, Vic 3136
 Report No
 22653/R006

 Date Issued
 11/10/2022

 Client
 WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)
 Tested by
 AM

 Project
 REDSTONE ESTATE - STAGE 8
 Date tested
 11/10/22

 Location
 SUNBURY
 Checked by
 JHF

Feature CLASS 3 Layer thickness 100 mm Time: 14:39:27

Test No		18	19	20	21		
Location		Notch	Road	Bluey C	rescent		
	Chainage	50	100	60	110		
	Offset	1.8	1.8	1.8	1.8		
		east	west	north	south		
		of kerb	of kerb	of kerb	of kerb		
Approximate depth from F.S.L.	т						
Measurement depth	mm	75	75	75	75		
Field wet density	t/m³	2.40	2.38	2.37	2.39		
Field dry density	t/m³	2.30	2.27	2.27	2.27		
Field moisture content	%	4.5	4.5	4.5	5.0		
			20mm C	lass 3 - Holci MOD	m, Oaklands IFIED	Junction	
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content	t/m³ %		20mm C		IFIED 26	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	%	19.0		MOD 2.: 5.	IFIED 26 5	S Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content		19.0	20mm C	MOD 2.2	IFIED 26	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	% mm		19.0	MOD 2.: 5.	19.0	S Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	mm wet	-	19.0	MOD 2.: 5.	1FIED 26 5 19.0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	mm wet dry t/m³	-	19.0	MOD 2.: 5.	1FIED 26 5 19.0	S Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m³	- - -	19.0 - - - -	19.0 - - -	19.0 - - -	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	mm wet dry t/m³	- - - - 1.0%	19.0 - - - - 1.0%	MOD 2.3 5. 19.0 1.0%	19.0 0.5%	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m³	- - -	19.0 - - - -	19.0 - - -	19.0 - - -	S Junction	

101.5

%

100.5

100.0

100.5

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

Density Ratio (RD)

A581ASSIGNED V1.13 MAR 13

Feature

CLASS 2

COMPACTION ASSESSMENT

		Job No	22653
CIVIL GEOTE	ECHNICAL SERVICES	Report No	22653/R007
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	19/10/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	JB
Project	REDSTONE ESTATE - STAGE 8	Date tested	19/10/22
Location	SUNBURY	Checked by	JHF

130 mm

Layer thickness

Test No		22					
Location		Zoogie					
		Road					
(Chainage	20					
	Offset	1.3					
		west					
		of kerb					
Approximate depth from F.S.L.	т						
Measurement depth	mm	100					
Field wet density	t/m³	2.40					
Field dry density	t/m³	2.28					
Field moisture content	%	5.0					
Maximum Dry Density Optimum Moisture Content	t/m³ %				.0		
Test procedure AS 1289.5.4.1	—	40.0		ı	1		I
Oversize rock retained on sieve	mm	19.0					
Doront of aversing material							
	wet	-					
Percent of oversize material	dry	-					
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Maisture Conton	dry t/m³	-					
Percent of oversize material Adjusted Maximum Dry Density	dry t/m³						
Percent of oversize material Adjusted Maximum Dry Density	dry t/m³						
Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conten Moisture Variation From	dry t/m³ at %	1.0%					
Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conten	dry t/m³ at %	-					
Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conten Moisture Variation From Optimum Moisture Conter	dry t/m³ at %	1.0%					
Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conten Moisture Variation From	dry t/m³ at %	1.0% dry 85.0	oil to the de	epth of test and	d not to the t	ull depth of th	le layer

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

A581ASSIGNED V1.13 MAR 13

09:00:03

Time:

Location

COMPACTION ASSESSMENT

Job No 22653 CIVIL GEOTECHNICAL SERVICES Report No 22653/R008 6 - 8 Rose Avenue, Croydon, Vic 3136 Date Issued 27/10/2022 WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested by AM Client **REDSTONE ESTATE - STAGE 8** 27/10/22 Project Date tested **SUNBURY**

Feature CLASS 2 Layer thickness 110 mm Time: 10:54:40

Test No		23	24				
Location		Sacre	d Drive				
	Chainage	710	760	1			
	Offset	1.8	1.8				
	Onsor	north	south				
		of kerb	of kerb				
Approximate depth from F.S.L.	т	OI KOID	OI NOID				
Measurement depth	mm	100	100				
Field wet density	t/m³	2.40	2.39				
Field dry density	t/m³	2.28	2.27				
Field moisture content	%	5.5	5.5				
Compactive effort Maximum Dry Density Optimum Moisture Content	t/m³ %			2.	OIFIED 27 .0		
Test procedure AS 1289.5.4.1	75 1						
Oversize rock retained on sieve	mm	19.0	19.0				
Percent of oversize material	wet	-	-				
Percent of oversize material	dry	-	-				
	t/m³	-	-				
Adjusted Maximum Dry Density	0111				1		
		-	-				
Adjusted Optimum Moisture Conte	nt %	1.0%	- 0.5%	<u> </u>	l		
Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From Optimum Moisture Conte	nt %	1.0%	0.5%				<u> </u>
Adjusted Optimum Moisture Conte	nt %	1.0% dry	- 0.5% dry				
Adjusted Optimum Moisture Conte	nt %						
Adjusted Optimum Moisture Conte	nt %	dry 87.0	dry 90.0	th of test and	I not to the f	ull depth of t	he layer

A581ASSIGNED V1.13 MAR 13

Approved Signatory : Justin Fry

Checked by

JHF

 CIVIL GEOTECHNICAL SERVICES
 Job No
 22653

 6 - 8 Rose Avenue, Croydon, Vic 3136
 Report No
 22653/R009

 Date Issued
 04/11/2022

 Client
 WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)
 Tested by
 AM

 Project
 REDSTONE ESTATE - STAGE 8
 Date tested
 03/11/22

 Location
 SUNBURY
 Checked by
 JHF

Feature CLASS 2 Layer thickness 130 mm Time: 09:55:54

Test No		25	26	27	28		
Location		Notch	Road	Bluey C	rescent		
	Chainage	50	100	60	110		
	Offset	1.8	1.8	1.8	1.8		
		east	west	north	south		
		of kerb	of kerb	of kerb	of kerb		
Approximate depth from F.S.L.	т						
Measurement depth	mm	125	125	125	125		
Field wet density	t/m³	2.39	2.40	2.40	2.41		
Field dry density	t/m³	2.26	2.28	2.28	2.27		
Field moisture content	%	5.5	5.5	5.5	6.0		
			20mm C	lass 2 - Holci MOD	/2022 m, Oaklands IFIED	Junction	
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content	t/m³ %		20mm C		m, Oaklands IFIED 27	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	%	40.0		MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	% mm	19.0	19.0	MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density	mm wet	19.0		MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	mm wet dry		19.0	MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	mm wet dry t/m³	- - -	19.0	MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	mm wet dry t/m³		19.0	MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	mm wet dry t/m³	- - -	19.0	MOD 2.: 6.	m, Oaklands IFIED 27 0	Junction	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	mm wet dry t/m³	- - -	19.0 - - - -	19.0 - - -	m, Oaklands IFIED 27 0 19.0 - - -	Junction	

100.0

%

100.5

100.5

100.0

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

Density Ratio (RD)

A581ASSIGNED V1.13 MAR 13