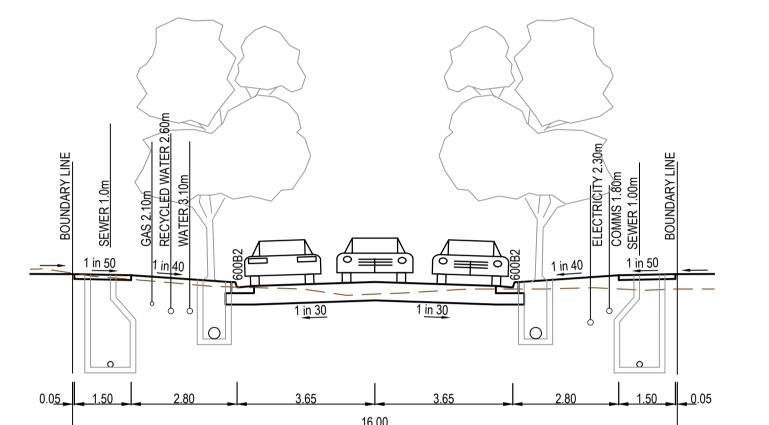


REFERENCE No. 2


Global-Mark.com.au®

AS CONSTRUCTED

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-01.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:30:16 AM

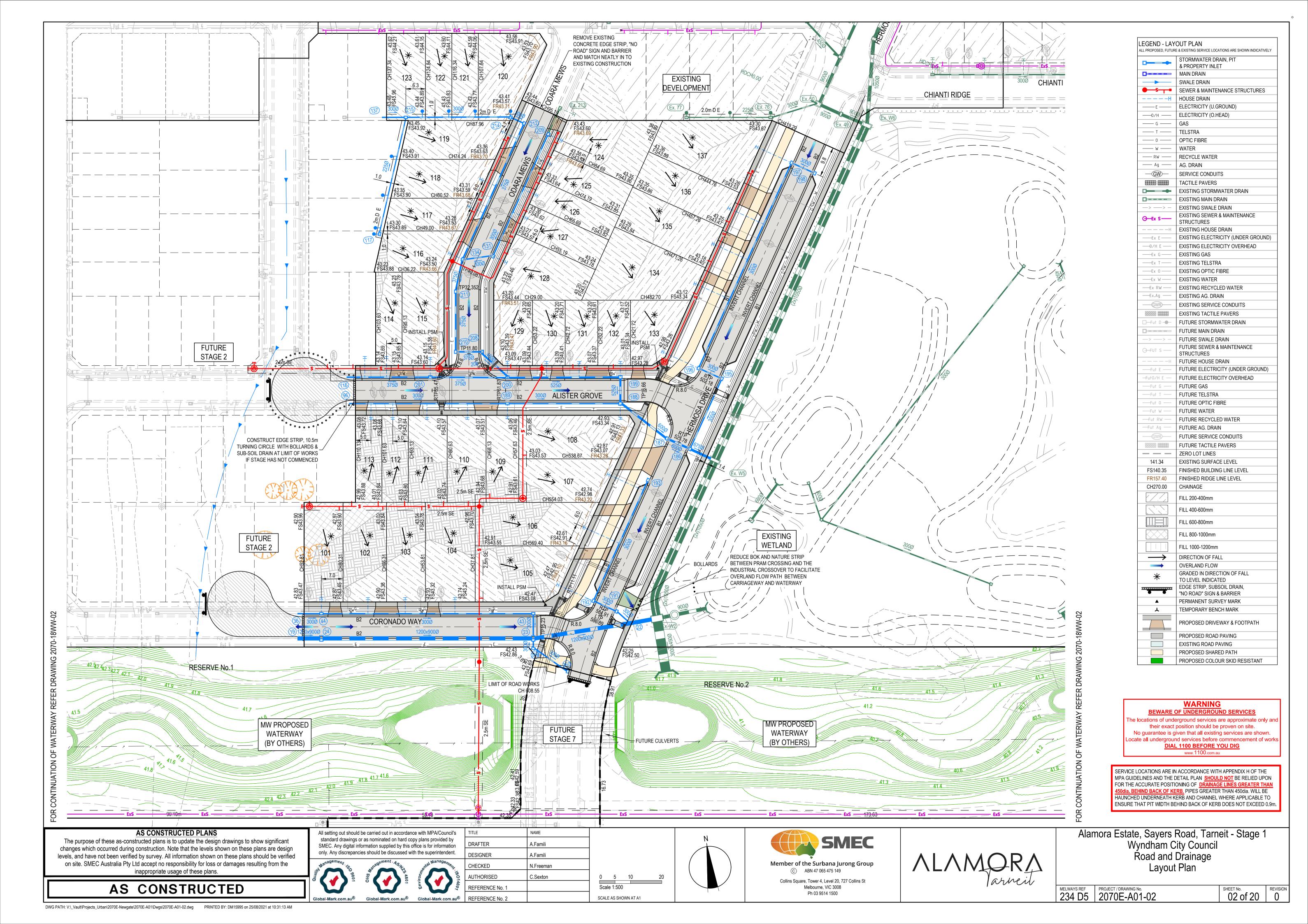
Global-Mark.com.au®

Global-Mark.com.au®

SCALE AS SHOWN AT A1

Ph 03 9514 1500

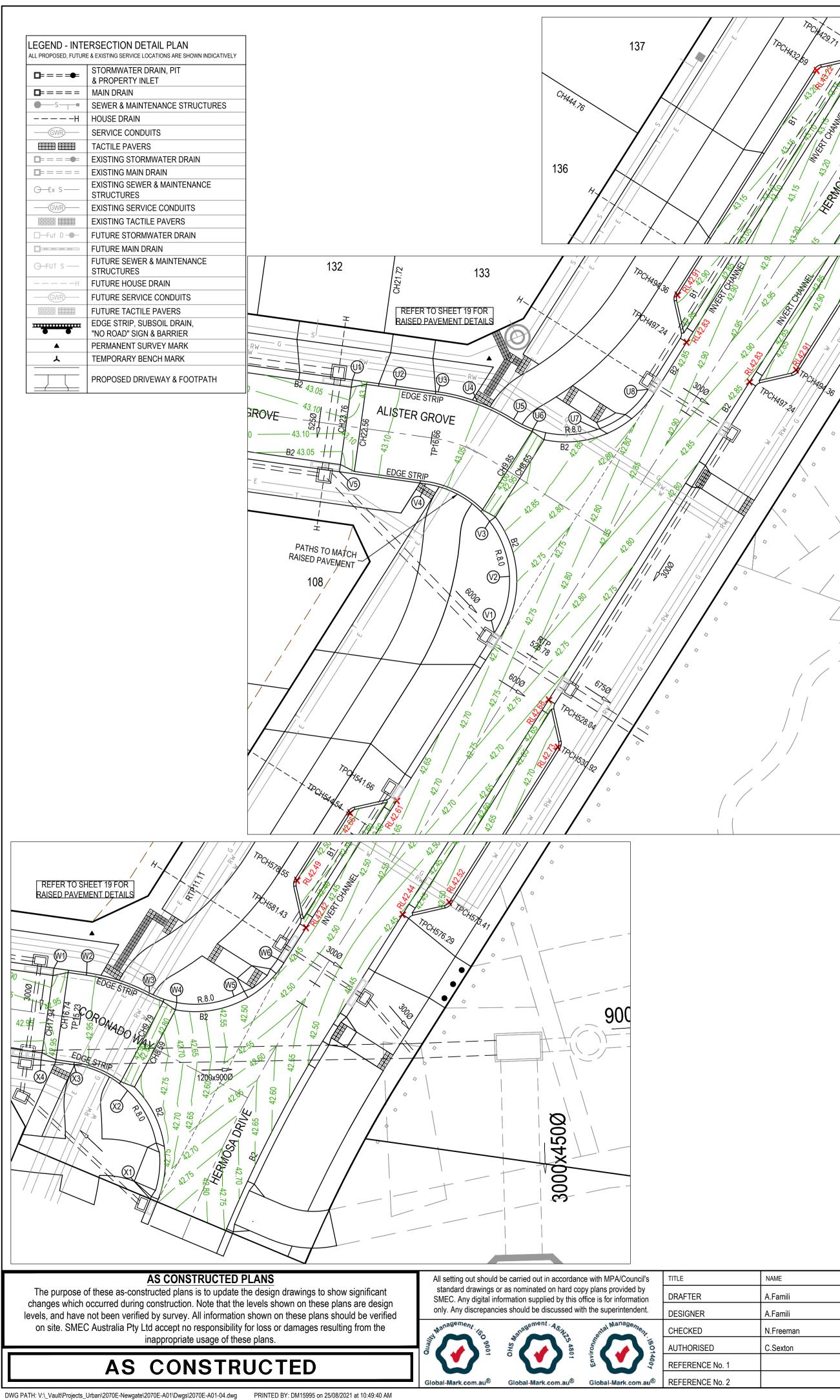
 1. CONTENT WITH THE SHAPPING DURING MY CONTENT ALL ADDRESS AND ADDRESS AD	2	CONDITION, AND	TO PROTECT THE F	UBLIC FROM HAZARI			S. SAFE AND STABLE	
<list-item> ANTEN THE COLONATIONAL IEEE THE AUTOMICS OF METRIC ON COLONATION IS IN ATTENDANCE THE AUTOMICS OF AU</list-item>	3. 3.1	. COMPLY W	ITH THE SAFETY REC		,	RAL REGULATIO	ONS AND STATUTORY	
<list-item> Asale: Find THE UNIT WHEN WHEN OR HIE CENTY & REQUEST IN THE SCHUTCH SNUT WHEN ATTENDED. MARKEN THE YOUR AND ALL IN EXPLOSE ALL AND ALL OWNER AND AND ALL OWNER TO SAME AND ALL OWNER AND</list-item>	3.2			,		INTENTION TO (COMMENCE TRENCHING	
<form> 14. LECONTROCTOR & D'OUDEL CAUCAL LEAVIS AL MUNCHING SERVERY DIVERSIME OR ANY DEPENDENT OF CONTROLLAND ON AN ONE OF CONTROLLAND ON AN ONE OF CONTROL ON AND AND ONE OF CONTROL ON AND AND AND ONE OF CONTROL ON AND AND AND AND AND AND AND AND AND AN</form>	3.3					HE REGULATIO	NS IS IN ATTENDANCE	
<text> Belley Construction of expension of the state of the sta</text>	4.					SEVEN (7) DAYS	PRIOR TO	
<text></text>	5	COMMENCEMEN	IT OF CONSTRUCTIO	N.				
<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>	0.	EXCAVATION BY	CONTACTING ALL R	ELEVENT SERVICE A	JTHORITIES. ANY E	XISTING SERVI		
 A. LINGS AND SERIES OWNERS, WITTEN INFORMATION FOR MERCENT REPAREMENTING AND OUX PHANE DO NOT SENIES AND THE SUPERIMENTING AND OUX PHANE DO NOT SENIES AND THE SUPERIMENTING AND OUX PHANE DO NOT SENIES AND AND THE SUPERIMENTING AND AND AND AND AND AND AND AND AND AND	6.	TREES MARKED	ON THE APPROVED	PLANS FOR REMOVA	L MUST BE REMOV	ED FROM THE S		
 PLEUP OF REBE CHARGES ARE SPECIFICIAL DIRECTION OF SPECIE DURING WITH THE LIPPOPER CHARGES AND THE REPORT OF LIPPOPER CHARGES AND THE REPORT OF		APPROVAL HAS	BEEN GIVEN BY COL	INCIL'S SUPERVISING	OFFICER.			
 CONUTION THE ASSUMPTION AND THE TANK OF MARKEN WITH HE TANK OF MARKEN WITH HE TANK OF MARKEN WITH AND THE ASSUMPTION AND THE ASSUMPTION AND THE MARKEN WITH HE TANK OF MARKEN WITH AND THE ASSUMPTION AND THE MARKEN WITH HE TANK OF MARKEN WITH AND THE ASSUMPTION AND THE MARKEN WITH HE TANK OF MARKEN AND THE MARKEN WITH AND THE ASSUMPTION AND THE MARKEN WITH AND THE MARKEN W	7.	WHERE LIP OF K	ERB CHAINAGES AR	E SPECIFIED. ALL DIN	IENSIONS AND RAI	DII ARE GIVEN T		
 Control to Cartonic A Separate Data Processing Control to the Processing Control to Contro to Control to Control to Control to Control to Control to Con	8.						NTIL WRITTEN APPROVAL	
 STANAED DRAWING EVOLUTIES TO BE HAVED MINIMUM OF SHIP TO BOUNDARY AND AND TAKEN AND AND AND AND AND AND AND AND AND AN								
 Bender LEWARS Binklung mission and Training Control Relicion ALL KERRE MOD CHANNEL AS PER TRAINARD DRAWING SERVICES IN A SAFE DECAMPORE AND TRAINING MODE AND TRA		STANDARD DRA	WING EDCM 303. COI	NDUITS TO BE PLACE	D MINIMUM OF 5m	FROM BOUNDA	RIES WHERE POSSIBLE	
 AL LINEMARKING, SIMMA AND INSPECTIONING, LEVINES TO BE A ACCORDANCE WITH MICRADIA SITE OF ACCOMMENDATION AND AND AND AND AND AND AND AND AND AN	9.	SUBSOIL DRAINS	S SHALL BE INSTALLE					
 MITHAL DESAURA OR PLATELING AND LONGTUDINAL LINES BLING EXTRUDED THERMOPLASTIC MATERIAL MORPHANE HEART TANAN HEA	10.	ALL LINEMARKIN	IG, SIGNING AND TRA					
 14. LEVELS AND TO SHALL AVERAGE NAME AND SOFTATION. SHALL NOT BLAST WITHIN 4.5m OF AN EXISTING LINE OF MATER, GALD REMER INFO. GOWING TO THE VOIDS WITHING TO THE VOIDS WITHING TO SOFTATION WITHING AND SOTTATION TO THE VOIDS WITHING TO SOFTATION WITHING AND SOTTATION TO THE VOIDS WITHING TO SOFTATION WITHING AND SOFTATION WITHIN TO AND SOFTATION WITHIN TO AND SOFTATION WITHING AND SOFTATION WITHIN TO AND SOFTATION WITHIN TO AND SOFTATION WITHING AND SOFTATION WITHIN TO AND SOFTATION WITH		(MATERIAL DEG/	AOUR OR PLASTELIN	E) AND LONGITUDINA				
WATER, GAS GR SERVER PRES GR With WII Sho F AM COMPLETED PART OF THE WORKS WITHOUT THE CONSENSOR THE HEAD ALL PRAVACULATION THE MINIMUM TO ALL PRAVACULATION THE HEAD ALL PRAVACULATION THE MINIMUM TO ALL PRAVACULATION THE HEAD ALL PRAVACULATION THE CONTRACT TEED YOR PRAVACULATION THE CONTRACT TO YEE ALL PRAVACULATION THE STORE ALL PRAVACULATION THE ALL P		ALL LEVELS ARE	TO AUSTRALIAN HE	IGHT DATUM.				
 1.4. LECKAYEE OR FILED AREAS OUTSIDE THE ROAD RESERVES SHALL BE SURPACED WITH A 100m NUMMUN TO STANDARD COMPACTION IN SIGNI LAYERS AND AS PER THE SPECIFICATION. WHere Interest ET LL IS SUSSESS OF SOME INTEREST THE INSTANT AND AS AND AS PER THE SPECIFICATION. WHere Interest ET LL IS SUSSESS OF SOME INTEREST THE INSTANT AND ADDRESS OF AND AS PER THE SPECIFICATION. WHERE INTERES IS TALL IN SUBJECT TO SOME INTEREST THE INSTANT AND INFORM THE INSTANT AND ADDRESS TO SOME TO SOME TO SOME TO SOME TO SOME THE INSTANT AND INFORMATION IS SOME THE INSTANT AND ADDRESS OF SOME INTEREST IS AND LOCATION OF ISST SPECIFICATION. WHERE HARED COMPACING IS STORE SOME INTERNATION ADDRESS AND INTERESS IS SOME TO SOME THE ISST SOME TO SOME THE ISST SOME THE ISST SOME THE ISST SOME SOME INTERNATION ADDRESS AND INTERESS INTERNATION AND INTERNATION ISST STORE INTERNATION ISST STORE SOME INTERNATION ADDRESS AND INTERESS INTERNATION AND INTERNATION ISST STORE SOME INTERNATION ADDRESS AND INTERESS INTERNATION AND INTERNATION INTERN	12.	OF WATER, GAS	OR SEWER PIPES O					
Strong Networks (Strong Networks) (Strong Net	13.			OUTSIDE THE ROAD R	ESERVES SHALL B	E SURFACED W	ITH A 100mm MINIMUM TO	
 Berner IN BEPTH. THE CONTRACTOR IS TO CARRY OUT SOL TESTS TO THE RECUMERENTS OF APPENDIX BAS SPECIFIED TEST ABLAIS AND LOCATION OF TESTS FOR EACH ALDTHEN SHALB BE APPROVED BY THE CONTRACTOR AND PORNAUES TO COULCIL. International Contraction Control Con								
 Adjenden Test Hesultis AND LOCATION OF TESTS FOR EACH ALLOTMENT SHALL BE APPROVED BY THE CONTRACTOR AND FORWARDEN SUCH AMERICAN, LESS COMMENTES ARE PER THE REQUERENTS OF THE SPECIFICATION, AND OLIGINATION IN THESE BRAINEDSOFT. HILA CONTRACTOR IS AND EXCENTION AND POLICIAL MATERIAL SCIENCE COMMENTES ARE PER THE REQUERENTS OF THE SPECIFICATION, AND OLIGINATION IN THESE BRAINEDSOFT. HILA CONTRACTOR IS AND EXCENTION AS OFTEN DECENTION AS OFTEN DECENTION AS OFTEN DECENTION TO SECENTION AS OFTEN DECENTION TO SECENTION AS OFTEN DECENTION AS OFTEN DECENTRAL DECENTION AS OFTEN DECENTRAL DECENT		300mm IN DEPTH	I, THE CONTRACTOR	IS TO CARRY OUT S	OIL TESTS TO THE	REQUIREMENT	S OF APPENDIX B AS	
 14. Lu Materiau, Lieb under Averagination and Production Test and Averagination and the structure of the structu		ACHIEVED. TEST	RESULTS AND LOCA	ATION OF TESTS FOR				
 PECIFICATION APPROVED WITH THESE DRAWINGS PRIOR TO PORWYORK BEING PLACED. COMPACTION TESTS 10 BE COMPLETED AND PROVIDED ON SUPERINTED AND EVENTS. FILL & CUTTATTERS ARE NOT TO SCIEDE In a SLOPE UNLESS SHOWN OTHERWISE. ALL ALL MATTERS SHALL ES CONTED GRAWINGS TO ANOTHER TO UNLESS WITH A NINMAUM FALL OF 1 In 10 TO THE DRAWINGS CUTET SHOW. STOTE THE DRAWINGS CUTET SHOW. STOTE DRAWINGS DE CUTET SHOW. STOTE DRAWINGS DE CUTET SHOW. ALL SCHWICHTS SHALL ES CALIFORMULITICATURE COMPARE ARE IN CLOSE FROMMITY ARE TO BE BACKFILLED AT SHOWLING THEORY IN USES STOTATION TO BE AND THE LOW SUB DRAWING TO THE CONTENT TO BE COMPLEXATION STOLE AND SHOW THE COMPARE AND STOTATION TO BE AND THE COMPARE AND SHOWLING THE COMPARE AND STATE TO THE COMPARE AND SHOW TO BE COMPLEXATION STOLE AND THE COMPARE AND SHOW TO BE COMPLEXATION STOLE AND THE COMPARE AND SHOW TO BE COMPLEXATION STOLE AND THE COMPARE AND SHOW TO BE COMPLEXATION STOLE AND THE COMPARE AND SHOW TO BE COMPLEXATION TO BE COMPLEXATION STOLE COMPARE AND SHOW TO BE COMPLEXATION STOLE AND SHOW TO BE COMPLEXATION TO BE COMPLEXATION STOLE COMPARE AND SHOW TO BE COMPLEXATION TO BE COMPLEXATION TO BE COMPLEXATION TO BE COMPLEXATION STOLE COMPLEXATION TO BE COMPLEXATION TO BE COMPLEXATION TO BE COMPLEXATION STOLE COMPARE AND SHOW TO BE COMPLEXATION TO BE COMPLEXATION TO BE COMPLEXATION STOLE COMPLEXATION STALE DATA THE SHOW TO BE COMPLEXATION THE COMPLEXATION THE PROVISIONS OF THE SHOW TO BE AND SHOW TO BE COMPLEXATION STALE DATA THE COMPLE	14.	FILL MATERIAL U	JSED UNDER PAVEM	ENTS AND FOOTPATH				
 19. ELLA CUT BATTERS ARE NOT TO EXCEED 1 In 63 LOPE. UNLESS SHOW OTHERWISE. 19. ALL CONTRACT PRES ARE CONTROL OR ADOMED, CARACIA DNA SHAPE DO TAVEYAN SURFACE. WITH A MINIMUM FALL OF 1 In 53 TO THE DRAMAGE OUTER 5 HOM. 19. ALL DRAMAGE PRES ARE CONTROL OWNED, NULLESS OTHERWISE SPECIFIED. 19. DRAMAGE PRES ARE CONTROL OWNED, DRAMAGE DRAWAGE SHALL OWN'SE LOSS OF TOWNED WAS FOR CONTROL OWNED. 19. DRAMAGE PRES ARE COUNDER RADAS, DOOTNED, OWNED WAS, PARKING BAYS ETC, ARE TO BE BACKFILLED WITH TO COUNCE INCLUDE RADAS OF TOWNED. 19. ALL HOUSE DRAN CONNECTIONS TO BE INSTALLED AT 6n FROM THE LOW SIDE BOUNDARY UND. 19. WHAT CONNECTIONS TO BE CONSTRUCTED IN ACCORDANCE WITH STANDARD DRAWINGS EDCO SOI TO 533. DRIPHOWS TO BE LOCATE BOLD TO BE STANLED AT 6n FROM THE LOW SIDE BOUNDARY UND. 10. WHAT OF TOPOERTY INTERS TO BE 500m. MINIMUM BELOW FINISMED SUPERCE UNDERS NOTE OTHERWISE. 10. WHAT OF TOPOERTY INTERS TO BE SOM MUMINUM BELOW FINISMED SUPERCE UNDERS NOTE OTHERWISE. 11. MONTON DOWNED TO BE SOM THE DATAS TO BE SOM THE SIDE OWNED AND THE SID		SPECIFICATION	APPROVED WITH TH	ESE DRAWINGS PRIC				
 ALL DAMAGE PITS MALL BE CAST MONOLITICALLY. CENENT RENDER SNALL ONLY BE USED TO REPAR DEFECTS. BACKELLING OF TRENDERS WHERE DRAINAGE AND SEVERAGE ARE IN CLOSE PROXIMITY ARE TO BE RACKELLED AS PER WINDHAM CITY COURCL STANDARD DRAWING SOA IN. SEVERATE ARE NOT EXPLOSING TO WIND THE TO BE DATE TO		FILL & CUT BATT	ERS ARE NOT TO EX	CEED 1 in 6 SLOPE, L				
18. DRAINAGE PTIS SHALL BE CAST MONOLITICALLY. CENENT RENDERS SHALL OUT, YE USED TO REPAR CEPECIS. 29. BACKFULLSD COTTEXNOLS WHERE DRAINAGE ON SUPERAGE ARE IN CLOSE PROMITY ARE TO BE BACKFULLDD WITH CLASS 2 F.C. ARE TO BE DRAIN CONCENTRATIS, DRIVENAYS, PARKING BAYS ETC. ARE TO BE DACKFULLD WITH CLASS 2 F.C. ARE TO BE DATAFILID AT 5th FROM THE LOW SIDE BOUNDARY U NO. 20. NUMERI OF PROPERTY INLETS TO BE DIM MINIAUM BELOW FINISHED SUPPARE UNLESS NOTED OTHERWISE. 20. VIENT OF PROPERTY INLETS TO BE DIM MINIAUM BELOW FINISHED SUPPARE UNLESS NOTED OTHERWISE. 20. VIENT OF PROPERTY INLETS TO BE DIM MINIAUM BELOW FINISHED SUPPARE UNLESS NOTED OTHERWISE. 20. VIENT OF PROPERTY INLETS TO BE DIM MINIAUM BELOW FINISHED SUPPARE UNLESS NOTED OTHERWISE. 20. VIENT OF PROPERTY INLETS TO BE DIM DRIVEN DUC DATA DECISION THEORY OF THE DIFFERENCE FOR DUC DATA DATA DECISION OF THE DIFFERENCE FOR DUC DATA DATA DATA DATA DATA DATA DATA DAT		150 TO THE DRA	INAGE OUTLET SHOW	VN				
 ALL SERVICES TREAMES USED RADAS, DEATHIL, DRIVENANS, PARKING BAYS ETC. ARE TO BE BOAKFILLED WITH CLASS 2 F.C.M. ALL HOUSE DRANG CONNECTIONS TO BE INSTALLED AT 6m FROM THE LOW SIDE BOUNDARY U.N.O. MINCHT OF PROPERTY INLETS TO BE SOME MINIMUM BELOWER HISHED SUFFACE UNLESS NOTED OTHERWISE. WHERT OF PROPERTY INLETS TO BE SOME MINIMUM BELOWER UNLESS SPECIFIED OTHERWISE BOLD CLEAR OF DIRAKINGS. WHERT OF PROPERTY INLETS TO BE SOME MINIMUM BELOWER UNLE UNLESS SPECIFIED OTHERWISE AND CLEAR OF DIRAKINGS TO BE LOATED MINI 27m FROM BULDING LINE UNLESS SPECIFIED OTHERWISE AND CLEAR OF DIRAKING SUT CLE								
 WITH CLASS 2 F.C.R. 11. ALL HOUSE PRAIN CONNECTIONS TO BE INSTALLED AT 5m FROM THE LOW SIDE BOUNDARY U N.O. 12. INVERT OF PROPERTY IN LETS TO BE SOOm MINIMUM BELCW FINSHED SURFACE UNLESS NOTED OTHERWISES. 13. PORTOLING CONSTRUCTION AND CONSTRUCTION UNLESS SPECIFIED OTHERWISES AND CLEAR OF DENIARAGE THIS SEWER MANIFEMANCE HOLES AND EXCISION THE SERVER MAIN TERNORE OF LOCATED WIN 30 FM FROM BUILDING LINE. 14. ADDITIONAL MOD OVER EXCLANTION SHALL BE BACKFILLED IN ACCORDANCE WITH THE PROVISIONS OF THE SPECIFICATION. 15. FOOTATH ICROSSFALL TO BE 1:30 16. ADDITIONAL HOROSFALL TO BE 1:30 17. ALL EXCIDINAL TOROSFALL TO BE 1:50 18. ADDITIONAL HOROSFALL TO BE 1:50 19. ADDITIONAL HOROSFALL TO BE 1:50 18. ADDITIONAL HOROSFALL TO BE 1:50 19. ADDITIONAL HOROSFALL FOR PROVIDENT MARKER (BREPRING) NO ROAD CENTRELINE AND TRYCOMOND BALL MARKER POST TO NICATE LOCATION OF FREPLUG. 19. INSTALL BUE HOROSTRUCTION PERFENDENCE AND STANDARDS CONTROL THE WOLDES THE SHALL BE CLEARED UP, GRADED AND ALL RUBBISH REMOVED WITH BUTCH TO ROLD CONTRUCTION TRACE HOROSTRUCTION PERCENCE AND STANDARDS CONTROL THE WITHOUT THE MARKER (BREPRING NO ROAD CENTRELINE AND TOYOCOMONTHELES FOR MAJOR CONSTRUCTION OF THE MANITES FOR MAJOR CONSTRUCTION OF THE MANITES FOR MAJOR CONSTRUCTION OF CHARGE DURING CONSTRUCTION OF COLLECTION OF SEDMENT RUNOFF ACCORDING TO CURRENT FEASTING TO THE SATISFACTION OF THE WOLDE STRUCTION ROLD AND ALL RUBBISH REMOVED. THE SITE SHALL BE NOT CRY CONSTRUCTION OR THE MAND TRYCOMONE W	19.					SE PROXIMITY	ARE TO BE BACKFILLED	
 11. ALL HOUSE DRAIN CONNECTIONS TO BE INSTALLED AT 60 FROM THE LOW SIDE BOUNDARY UNCO. 22. INVERT OF PROPERT IN ULSTS TO BE SOM INMUMB ELCUR MILESS SPECIFICS ULLESS NOT ELCAR OF DRIVINASE TO SE LOCATENUCTED IN ACCORDANCE WITH STANDARD DRIVINGS BOCK SOT TO S0. 23. SEVER MAINTENNOSE HOLES AND EXISTING TREES. OUBLE DRIVEWAY WIDTH TO BE 7 an AT FRONT OF PATHOBILIONS INII. 24. ADDITIONAL AND OVER EXCAVATION SHALL BE BACKFILLED IN ACCORDANCE WITH THE PROVISIONS OF THE SPECIFICATION. 25. FOOTPATH OROSEFALL TO BE 1:9 26. ALL CONTINUES AND MAY STANDARD DRAWINGS EDCL PATHS ARE TO BE CONSTRUCTED AS PER CITY OF WYNDHAM SPECIFICATIONS AND MAY STANDARD DRAWINGS EDCL PATHS ARE TO BE CONSTRUCTED AS PERCITY OF WYNDHAM SPECIFICATIONS AND MAY STANDARD DRAWINGS EDCL PATHS ARE TO BE CONSTRUCTED AS PERC ITY OF WYNDHAM MARCE POST TO INDICATE LOCATION OF PREPAUG. 27. ALL EXOR (INC. MAIN THE WORKS ARE TO BE REALWING WOLK THESES. NOT SHOWN ON THE DRAWINGS BUT LOCATED WITHIN THE WORKS ARE TO BE REMOVED AND DISPOSED OFFSITE. 28. THE CONTINUE ON THE RESE AND SHAUDD DRAWINGS EDCL OF STEES. 29. THE CONTINUE TO BE FREATURE CONSTRUCTION FRACEDURES AND STANDARDS CONTROL. THE VOLUME AND LOCATED TO FRACE CONSTRUCTION FRACEDURES AND STANDARDS CONTROL. THE VOLUME AND LOCATED TO THE SUBJECT TO TAKE THE CONSTRUCTION TRAFFIC CONSTRUCTION TRAFFIC CONTROL THE VOLUME AND LOCATED TO THE SUBJECT TO CONSTRUCTION TRAFFIC LOADING DURING CONTRACTORS TO BE LEST TO A CLEAN AND TDY CONDITION TO THE SATISFACTION OF THE SUPERIMENTICI. 30. FOR OWNERTION TRAFFICATION THE EVALUATE THAN CONSTRUCTION TRAFFIC LOADING DURING CONTRACTORS DIVENTION TO THE CONSTRUCTION TRAFFIC LOADING DURING CONTRACTORS DIVENTION TO CONSTRUCTION TRAFFIC LOADING DURING CONTRACTORS DIVENTION TO THE PREPS STREAM THE LOW TO ADARPOYED BY THE CONTRACTOR SUPPORT ON TRAFFIC TO THE PRESS STREAM THE CONTRACTORS THE ESTIMAL THE CONSTRUCTION TRAFFIC LOADING DURING CONTRACTOR	20.			OADS, FOOTPATHS,	DRIVEWAYS, PARK	ING BAYS ETC.	ARE TO BE BACKFILLED	
 24. VEHICLE CROSSINGS TO BE CONTRUCTED IN ACCORDANCE WITH STANDARD DRAWINGS EDCM SOT TO 503. DRAWN STO TO BE LOAD BUN JÖRF FORM TO HEASS SPECIFIED DITERWISE AND CLEAR OF DRAWNAE PTS. SEWER MAINTENANCE HOLES AND EXISTING TREES. DOUBLE DRIVEWAY WIDTH TO BE 7.0 m AT FRONT OF PATHEBULIOBS (INE). 25. FOOTPATH CROSSFALL TO BE 150 26. ALL CONTRUCTION SAND MAY STANDARD DRAWINGS EDCD THES AND THE SERVER AND MAY STANDARD DRAWINGS EDC MOT TO 403. 27. ALL EXIT (RON ANTE): THESE AND SHALL BE BACKFILLED IN ACCORDANCE WITH THE PROVISIONS OF THE SPECIFICATIONS AND MAY STANDARD DRAWINGS EDC MOT TO 403. 27. ALL EXIT (RON ANTE): THESE AND SHALLINGS CLIC PATHS ARE TO BE CONSTRUCTED AS PERC ITY OF WYNDHAM SPECIFICATIONS AND MAY STANDARD DRAWINGS EDC MOT THESE. NOT SHOWN ON THE DRAWINGS BUT LOCATED WITHIN THE WORKS ARE TO BE RENOVED AND DISPOSED OFTSITE. 28. INSTALLE PRASED REFECTIVE PAYLEMENK INCLUCINE DATE TREES. NOT SHOWN ON THE DRAWINGS BUT LOCATED WITHIN THE WORKS ARE TO BE RENOVED AND DISPOSED OFTSITE. 29. INTE CONTRICTION OF FIREFLUE. 20. THE CONTRUCTION OF SEMENT TAIL CONSTRUCTION ROCEDURES AND STANDARDS CONTRUCT. THE VILLE PASE DEPENDENT AND THE WORKS DRAWING CONSTRUCTION TO THE SATISFACTION OF THE SEMENTAL GUIDED FOR MACCE DORING TO CURRENT EPA - EWINKOMMETTAL GUIDED FOR MACCE DORING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REATING TOON THE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE EXISTING TRUCTOR THENDER IN TOTAL LENGTH OF ROADS CONSTRUCTION TO THE SATISFACTION OF THE SUBJECTED TO CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE EXISTING TRUCTED THE CONSTRUCTION TRAFFIC LOADING DURING SOF WORK DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE EXISTING TRUCTED THE CONTRUCTION TRAFFIC LOADING DURING SOF WORK DAMAGED DURING CONSTRUCTION TRAFFIC LOADING DURING SOF WORK DAMAGED DURING CONSTRUCTION TRAFFIC LOADING DURING SOF WORKED AND CONSTRUCTION TRAFFIC LOADING DURING SOF WORK DAMAGED DUR		ALL HOUSE DRA	IN CONNECTIONS TO					
PRIVINGE PTS: SEWER MAINTENANCE HOLES AND EXISTING TREES. DOUBLE DRIVEWAY WIDTH TO BE 7.0m AT FRONT OF PATHEWILLODIN UNIC. 24. ADDITIONAL, AND OVER EXCAVATION SHALL BE BACKFILLED IN ACCORDANCE WITH THE PROVISIONS OF THE SPECIFICATION. 25. FOOTPATH ORDSFALL TO BE 1:50 26. ALL FOOTTATIS AND SHARED PDEDESTINATIONICYCLE PATHS ARE TO BE CONSTRUCTED AS PER CITY OF WYNDHAM SPECIFICATIONS AND MAY STANDARD DRAWINGS ECON 27. ALL EXOTIC, IONN ANTELY IFEES AND SHANDIS/COLE PATHS ARE TO BE CONSTRUCTED AS PER CITY OF WYNDHAM MARKER POST TO INDICATE LOCATION OF FIRES INCL SING DATO TREES. NOT SHOWN ON THE DRAWINGS BUT LOCATED WITHIN THE WORKS ARE TO BE REMOVED AND DISPOSED OFFSITE. 26. INSTALL USE RAISO SHARE CONSTRUCTION PROCEEDURES AND STANDARDS CONTROL THE VOLUME AND LOCATION OF COLLECTION OF SEDMENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR MAJOR CONSTRUCTION THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBISH REMOVED. 27. THE JORN PAYMENT ON OB DRAWINGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTEEMANCE PERIOD TO 28. EXISTING PROVEMENT ON DE THAT AS ALTER AND TOY COMBINION TO THE SATISFACTION OF THE SUPERINTENDENT. 29. THELOWER SUP AND EXISTING THE SHALL BE ICLEANED UP, GRADED AND ALL RUBBISH REMOVED. 21. EXISTING PAYMENT OF DRAWINGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO 29. ERRINGTATE NO BRAINAGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO 20. ERRINGTAL SUPERIMINE DE IN D.C. R. FOR VAVEMENT MAKE UPS AS PER THE STANDARD 20. TOTAL LENGTH OF DRAWING CONSTRUCTION OF THE SUMMENT THAT UPS AS 20. CONCRETE PIPES 21. ALL TOST TO BRAINGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING 20. CONTRUCTION UNLESS THE PIPE STRENGTH CHARACTERRITICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. 21. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELIND AT THE CONTRACTOR'S 22. CONCRETE PIPES MANAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING 22. CONCRETE PIPES DAMAGED DUE TO CONSTRU		VEHICLE CROSS	SINGS TO BE CONSTR	RUCTED IN ACCORDA	NCE WITH STANDA	RD DRAWINGS	EDCM 501 TO 503.	
 ADDITIONAL AND OVER-EXCAVATION SHALL BE BACKFILLED IN ACCORDANCE WITH THE PROVISIONS OF THE SPECIFICATIONS. AND IMPA STANDARD DRAWINGS EDCM 401 TO 403. ALL EXOTTO KNON ANTHY. TREES AND STRANDBORG VIELE PATHS ARE TO BE CONSTRUCTED AS PER CITY OF WYNDHAM SPECIFICATIONS AND IMPA STANDARD DRAWINGS EDCM 401 TO 403. ALL EXOTTO KNON ANTHY. TREES AND STRANDBORG VIELE DEAD TREES. NOT SHOWN ON THE DRAWINGS BUT LOCATED WITHIN THE WORKS ARE TO BE REMOVED AND DISPOSED DEFSTIE. INSTAL BUE RASID ENDINE THAT THEIR CONSTRUCTION PROCEDURES AND STANDARDS CONTROL THE VIELINE AND FOR COLLECTION OF FREPLUG. THE CONTRACTOR IS TO BUIGE THAT THEIR CONSTRUCTION PROCEDURES AND STANDARDS CONTROL THE VIELINE AND CONSTRUCTION TREE CONSTRUCTION STRES. UPON COMPLETION OF CONSTRUCTION STRES. UPON COMPLETION OF CONSTRUCTION STRES. UPON COMPLETION OF CONSTRUCTION THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBIH REMOVED. THE SATISFACTION OF THE SATISFACTI		DRAINAGE PITS,	SEWER MAINTENAN					
 POOTPATH'S AND SHALL TO BE 1:50 ALL FOOTPATH'S AND SHARED PEDESTRANABICYCLE PATH'S ARE TO BE CONSTRUCTED AS PER CITY OF WYNDHAM SPECIFICATIONS AND MPA STANDARD DRAWINGS EDCM 401 TO 403. ALL EXPLOYED NOW THE TERES AND STANDARD DRAWINGS EDCM 401 TO 403. ALL EXPLOYED NOW THE TERES AND STANDARD THE SHARED AND DISPOSED OFFSTIE. INSTALL BUE PAISED REFEATURE PAYEMENT MARKER (RRAPH) ON ROAD CENTRELINE AND 'GROUND BALL' MARKER POST TO NOICATE LOCATION OF FREPLIG. THE CONTRACTOR IS TO BUILET THE CONSTRUCTION PROCEDURES AND STANDARDS CONTROL THE VOLUME AND LOCATION FOR COLLECTION OF SEDIMENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR MANOR CONSTRUCTION STESS. UPON COMPLETION OF CONSTRUCTION AND AND TDY CONDITION TO THE SATISFACTION OF THE SUPERITERIDENT. EXISTING PAYEMENT OR DRAINGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTATED TO THE CATISFAL SHALL WILL BE NUL CR. FOR PAYEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAM CITY COUNCIL. TOTAL LENGTH OF ROADS CONSTRUCTION IS \$75m TOTAL LENGTH OF ROADS CONSTRUCTION IS \$75m TOTAL LENGTH OF ROADS CONSTRUCTION IS \$75m TOTAL LENGTH OF ROADS CONSTRUCTION LEAS AS TELES EXENCED AND APPROVED BY THE CONTRACTORS IS ENSTALED IN ACCORDANCE WITH AS1428. CONCRETE PIPES MALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS IS SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONTRUCTION WAS THE PIPE STRENOTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS INSTRUCTION LOADS SHE DE REPLACED & RELAD AT THE CONTRACTORS OF ALL STORMWATER DRAINGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENOTICES HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTOR I	24.	ADDITIONAL AND	OVER-EXCAVATION	I SHALL BE BACKFILL	ED IN ACCORDANC	E WITH THE PR	OVISIONS OF THE	
SPECIFICATIONS AND MPA STANDARD DRAWINGS EDCM 401 TO 403. 21. ALL STOTIC NON NATH, THEE SAND STANDARD DRAWINGS EDCM 101 F02. 21. ALL STOTIC NON NATH, THEES AND STANDARD SUBJECTED VERTICIAL THE SERVICE AND DISPOSED OFFSTIE. 23. INSTALL BUE RAISE DEFECTIVE PAVEMENT MARKER REMEMPIION ROAD CENTRELINE AND "GROUND BALL" MARKER POST TO INDICATE LOCATION OF FREPLUG. 23. THE CONTRACTOR IS TO DEWLET HAT THERE CONSTRUCTION PROCEDURES AND STANDARDS CONTROL THE VOLUME AND LOCATION FOR COLLECTION OF SEDURENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR MANOR CONSTRUCTION STEES. 24. UPON COMPLETION OF CONSTRUCTION STEES 25. UPON COMPLETION OF CONSTRUCTION STEES. 25. UPON COMPLETION OF CONSTRUCTION STEES. 26. UPON COMPLETION OF CONSTRUCTION STEES. 27. THE LOYNER PROMEMENT RUNOFF ACCORDING CONSTRUCTION OF THE SUPERITENDENT. 28. THE LOYNER UPON BARK METERAL SHALL WILL BE ND.C.R.FOR PAVEMENT MARKE UPS AS PER THE STANDARD DRAWINGS OF WYDDHAN CITY COUNCIL. 29. THE LOYNER PUBBASK METERAL SHALL WILL BE ND.C.R.FOR PAVEMENT MARKE UPS AS PER THE STANDARD DRAWINGS OF WYDDHAN CITY COUNCIL. 20. TOTAL LENGTH OF DRANGE CONSTRUCTION IS 157870 21. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS CONSTRUCTED IS 157870 23. ALL TGS TO BE INSTALLED IN ACCORDANCE WITH AST428. PEINFORCED CONCRETE PIPE 21. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS CONSTRUCTED IS 157870 23. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS AND THE DACCORDANCE WITH AST428. PEINFORCED CONCRETE PIPE 21. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS AND THE DACCORDANCE WITH AST428. PEINFORCED 22. CONCRETE PIPES MAIN TO BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS AND THE PIPES TRENOTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS IN HIPPO ST		FOOTPATH CRO	SSFALL TO BE 1:50					
LICATED WITHIN THE WORKS ARE TO BE REMOVED AND DISPOSED OFFSITE. 28. INSTALL BUT PAKER PETHECTIVE PAVEMENT MARKER (REMPM) ON ROAD CENTRELINE AND "GROUND BALL" MARKER POST TO INDICATE LOCATION OF FIREPLUG. 29. THE CONTRACTOR IS TO ENSIRE THAT THEIR CONSTRUCTION PROCEDURES AND STANDARDS CONTROL. THE VOLUME AND LOCATION FOR COLLECTION OF SEDMENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR MAJOR CONSTRUCTION THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBISH REMOVED. THE SITE IS TO BE LEFT IN A CLEAN AND TOY CONDITION TO THE SATISFACTION OF THE SUFFERITION OF THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBISH REMOVED. THE SITE IS TO BE LEFT IN A CLEAN AND THY CONDITION TO THE SATISFACTION OF THE SUFFERITION OF THE SUFFERITION OF THE OWNER SUFFERING THE CONTROL IN THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBISH REMOVED. THE SITE ASTIFACTION OF THE CONTROL IN TO CONSTRUCTION TO THE MAINTENANCE PERIOD TO BE REINSTATED TO THE SATISFACTION OF THE CONTROL IN THE SATISFACTION OF THE CONTROL IN THE SATISFACTION OF THE CONTROL IN THE SATISFACTION OF THE OWNER ONSTRUCTED IS 1578m 3. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AST428. PEINFORCED CONCRETE PIPE 1. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION SATE TO ACCORD WITH A SIZE 2007. LOADS ON BURIED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER COMPUTING SATE TO ACCORD WITH A SIZE 2007. LOADS ON BURIED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER COMPUTING SATE TO ACCORD WITH A SIZE 2007. LOADING DURING CONSTRUCTION LOADING TO CONSTRUCTION LOADING TO THE SATISFACTOR ON THE SIZE AND APPROVED BY THE CONTRACTORS ENGINEER COMPUTING TO	26.					NSTRUCTED AS	PER CITY OF WYNDHAM	
MARKER POST TO INDICATE LOCATION OF FIREPUIG. 29. THE CONTRACTORS ITS DESUREE THAT THEIR CONSTRUCTION PROCEDURES AND STANDARDS CONTROL THE VOLUME AND LOCATION FOR COLLECTION OF SEDMENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR AUROE CONSTRUCTION ITHE WHOLE SITE SHALL BE CLEANED UP, ORADED AND ALL RUBBISH REMOVED THE SITE IS DO LEFT IN A CLEAN AND TIDY CONDITION TO THE SATISFACTION OF THE SUPERINTEMDENT. 30. EXSTING PAVEMENT OR DRAINAGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTREED TO THE SATISFACTION OF THE COUNCIL ENGINEER. 31. THE LOWER SUB-BASE MATERIAL SHALL WILL BE ND.C.R. FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAIN CONSTRUCTED IS 32. TOTAL LENGTH OF ROADS CONSTRUCTED IS 33. TOTAL LENGTH OF ROADS CONSTRUCTED IS 34. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. REINFORCED CONCRETE PIPE 34. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. REINFORCED CONCRETE PIPE 35. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. REINFORCED CONCRETE PIPE 34. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. REINFORCED CONCRETE PIPE 35. ALL TOSI TO BE INSTALLED IN ACCORDING TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. 35. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE RELACED & RELAD AT THE CONTRACTORS 36. ALL TOSI TO BE INSTALLED IN ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. 36. ALL TOSI TO BURIES COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. 37. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE RELACED & RELAD AT THE CONTRACTORS 37. ALL TOSI TO BURIES THE PIPE STREENE 38. ALL TOSI TO BURIES THE PIPE STREENE 39. ALL TOSI TO BURIES THE PIPE STREENE 39. ALL TOSI TO BURIES THE PIPE STREENE 30. ALL TOSI TO BURIES THE PIPE STREENE 30. ALL TOSI TO BURIES THE PIPE STREENE 30.	27.	```	,	-	,		THE DRAWINGS BUT	
VOLUME AND LOCATION FOR COLLECTION OF SEDMENT RUNOFF ACCORDING TO CURRENT EPA - ENVIRONMENTAL GUIDELINES FOR AUROC CONSTRUCTION STEES. 30. UPON COMPLETION OF CONSTRUCTION THE WHOLE SITE SHALL BE CLEANED UP, ORADED AND ALL RUBBISH REMOVED. THE SITE IS TO BE LEFT IN A CLEAN AND TIDY CONDITION TO THE SATISFACTION OF THE SUFERNITENDENT. 31. EXISTING PAVEMENT OR DRAINAGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTATED TO THE SATISFACTION OF THE COUNCIL ENGINEER. 32. THE LOWER SUBBASE MATERIAL SHALL WILL BE ND.C.R. FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WINDHAM CITY COUNCIL. 33. TOTAL LENGTH OF ROADS CONSTRUCTED IS 1578m 34. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. CENFFORCE OCONCRETE PIPE 1 ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENCTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROXED BY THE CONTRACTORS ENGINEER (COMPUTATIONS ARE TO ACCORD WITH AS 3725.007. LOADS ON BURIED PIPES. 2 CONCRETE PIPES 1 ALL STORMWATER DRAINAGE DIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENCTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROXED BY THE CONTRACTORS ENGINEER (COMPUTATIONS ARE TO ACCORD WITH AS 3725.007. LOADS ON BURIED PIPES. 2 CONCRETE PIPES 1 ALL TOSI TO BE INSTALLED IN ACCORD RESERVE CORONADO WAY 1 MON FOR DESERVE CORONADO WAY Alamora Estate, Sayers Road, Tarneit - Stage	28.				BRRPM) ON ROAD	CENTRELINE AN	ID "GROUND BALL"	
GUIDELINES FOR MAJOR CONSTRUCTION SITES. 30. UPON COMPLETION OF CONSTRUCTION THE WHOLE SITE SHALL BE CLEANED UP, GRADED AND ALL RUBBISH REMOVED. THE SITE IS TO BE LEFT IN A CLEAN AND TIDY CONDITION TO THE SATISFACTION OF THE SUPERINTENDENT. 31. EXISTING PAVEMENT OR DRAINAGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTATED TO THE SATISFACTION OF THE COUNCIL ENGINEER. 32. THE LOWER SUB-BASE MATERIAL SHALL MILL BE N.D. C.R.FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAM CITY COUNCIL. 31. TOTAL LENGTH OF ROADS CONSTRUCTED IS 1975/m 32. TALL UNITY OF DRAINS CONSTRUCTED IS 1578/m 33. ALL TGSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. PEINFORCED CONCRETE PIPE 14. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE 34. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED B AND APPROVED BY THE 35. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED B AND APPROVED BY THE 36. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED B AND AT THE CONTRACTORS 36. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED B REPLACED B REPLACED B REPLACED B AND AT THE CONTRACTORS 36. LOADS CONSTRUCTION LOADS SHALL BE REPLACED B ARE LAD AT THE CONTRACTORS 36. LOADS CONSTRUCTION LOADS SHALL BE REPLACED B REPLACED B REPLACED B REPLACED B REPLACED B ARE LAD AT THE CONTRACTORS 36. LOADS CONSTRUCTION LOADS SHALL BE REPLACED B RE	29.							
REMOVED. THE SITE IS TO BE LEFT IN A CLEAN AND TIDY CONDITION TO THE SATISFACTION OF THE SUPERIMITENDENT. 3. EXISTING PAVEMENT OR DRAINAGE WORKS DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTATED TO THE SATISFACTION OF THE COUNCIL ENGINEER. 3. THE LOWER SUB-BASE MATERIAL SHALL WILL BE N.D. C.R. FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAM CITY COUNCIL. 3. TOTAL LENGTH OF DRAINS CONSTRUCTED IS 975m TOTAL LENGTH OF DRAINS CONSTRUCTED IS 1576m 3. ALL TOSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. PEINFORCED CONCRETE PIPE 1. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS 1. SOUTH TO THE SATISFACTION OF THE SATISFACTION CONSTRUCTION LOADS CONSULTED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS 1. SOUTH TO THE SATISFACTION OF THE SATISFACTION CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS 1. SOUTH TO THE SATISFACTION OF THE SATISFACTION	30	GUIDELINES FOR	R MAJOR CONSTRUC	TION SITES.				
SUSTING FAURENT OR DRAINAGE WORKS DAMAGE DURING CONSTRUCTION OR THE MAINTENANCE PERIOD TO BE REINSTATED TO THE SATISFACTION OF THE COUNCIL ENGINEER. THE LOWER SUB-BASE MATERIAL SHALL WILL BE ND.C.R. FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAM CITY COUNCIL. TOTAL LENGTH OF DRAINS CONSTRUCTED IS 975m TOTAL LENGTH OF DRAINS CONSTRUCTED IS 975m TOTAL LENGTH OF DRAINS CONSTRUCTED IS 1578m ALL TGSI TO BE INSTALLED IN ACCORDANCE WITH AS 1428. EINFORCED CONCRETE PIPE ALL STORMWARTER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION STRESS TREVENES THENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN CONFORMANCE WITH AS 3725 2007. LOADO SON BURINED PIPES. CONSTRUCTION UNLESS THE PIPE STRENGT CHARACTERISTICS DESCRIPTION TO CONSTRUCTION LOAD SHALL BE REPLACED & RELAID AT THE CONTRACTORS DESCRIPTION TO A STREET STRENGT CHARACTERISTICS APPE THE STRENGT CHARACTERISTICS DESCRIPTION TO A STREET STRENGT CHARACTERISTICS APPE THE STRENGT CHARACTERISTICS DESCRIPTION TO A STREET STRENGT CHARACTERISTICS APPE THE STRENGT CHARACTERISTICS DESCRIPTION TO	00.	REMOVED. THE	SITE IS TO BE LEFT II			,		
THE LOWER SUB-BASE MATERIAL SHALL WILL BE N.D.C.R. FOR PAVEMENT MAKE UPS AS PER THE STANDARD DRAWINGS OF WYNDHAM CTY COUNCIL TOTAL LENGTH OF ROADS CONSTRUCTED IS 975m TOTAL LENGTH OF ROADS CONSTRUCTED IS 1578m ALL TGSI TO BE INSTALLED IN ACCORDANCE WITH AS 1428. ERIFFORCED CONCRETE PIPE ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION IDADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OFFICIENT OF THE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION IDADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OFFICIENT PIPES DAMAGED DUE TO CONSTRUCTION IDADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OFFICIENT PIPES DAMAGED DUE TO CONSTRUCTION IDADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS DETEMPTION TO ADD RESERVE CORONADO WITH AS 3725-2007, LOADS ON BURIED PIPES. ALL TGS TO BE STRENGT CHARACTERISTICS ALL TGS TO BE STRENGT CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS TO ACCORD TO A SHALL BE REPLACED & RELAID AT THE CONTRACTORS ALL TGS TO BE STRENGT CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED DETEMPTION TO ADD RESERVE CORONADO WAY ALL TGS TO BE STRENGT CHARACTER STRENGT CHARACTERISTICS ALL TGS TO BE STRENGT CHARACTER STRENGT	31.	EXISTING PAVEN	MENT OR DRAINAGE			TION OR THE MA	AINTENANCE PERIOD TO	
 3. TOTAL LENGTH OF ROADS CONSTRUCTED IS 975m TOTAL LENGTH OF DRAINS CONSTRUCTED IS 1578m 3. ALL TGSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. REINFORCED CONCRETE PIPE ALL STORWMATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAD AT THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAD AT THE CONTRACTORS ON TRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAD AT THE CONTRACTORS ON THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAD AT THE CONTRACTORS ON THE CONTRACTORS ENGINEER. CONCOLLARS ON THE CONTRACTOR SHALL BE REPLACED & RELAD AT THE CONTRACTORS ON THE CONTRACTOR SHALL BE REPLACED TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAD AT THE CONTRACTORS ON THE CONTRACTOR SHALL BE REPLACED TO CONSTRUCTION LOADS SHALL BE REPLACED TO CONSTRUCTION LOADS SHALL BE REPLACED TO CONSTRUCTION TRACTORS ON THE CONTRACTORS ON THE CONTRACTORS ON THE CONTRACTORS ON THE CONTRACTOR SHALL BE REPLACED TO CONSTRUCTION TRACTORS ON THE CONTRACTORS ON THE CONTRACTOR SHALL BE REPLACED TO CONSTRUCTION LOADS ON THE CONTRACTOR SHALL BE REPLACED TO CONSTRUCTION LOADS ON THE CONTRACTOR ON THE CONTRACTOR ON THE CONTRACTOR SHALL BE REPLACED TO CONTRACTOR SHALL BE REPLACED TO CONTRACTOR ON THE CONTRACTOR SHALL BE REPLACED TO CONTRACTOR SHALL BE REPLACED TO CONTRACTOR S	32.	THE LOWER SUE	3-BASE MATERIAL SH	ALL WILL BE N.D.C.R		IAKE UPS AS PE	R THE STANDARD	
 ALL TGSI TO BE INSTALLED IN ACCORDANCE WITH AS1428. PEINFORCED CONCRETE PIPE ALL STORMMATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007, LOADS ON BURIED PIPES. CONTRACTORS ENGINEER. COMPUTATION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. CONTRACTORS ENGINEER. CONTRACTORS ENGINEER. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. CONTRACTORS ENGINEER. CONTRACTORS ENGINEER. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. CONTRACTORS ENGINEER. ALS STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. CONTRACTORS ENGINEER. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. ALL STORMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELADA AT THE CONTRACTORS ON DURIED PIPES. ALL STORMAGED DUE	33.	TOTAL LENGTH	OF ROADS CONSTRU	ICTED IS 975m				
1. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS BORINEER COMPUTATIONS RATE TO ACCORD WITH AS 3252 2007, LOADS ON BURIED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES 2. CONCRETE PIPES 2. ADD THE DIPES 2. ADD THE DIPES 2. ADD THE DIPES 2. ADD THE DIPES 3. ADD TALL DATES	34.				8.			
1. ALL STORMWATER DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS BORINEER COMPUTATIONS RATE TO ACCORD WITH AS 3252 2007, LOADS ON BURIED PIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELAID AT THE CONTRACTORS OF THE DIPES. 2. CONCRETE PIPES 2. CONCRETE PIPES 2. ADD THE DIPES 2. ADD THE DIPES 2. ADD THE DIPES 2. ADD THE DIPES 3. ADD TALL DATES								
CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN COMPUTED AND APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS 3725-2007. LOADS ON BURIED PIPES.				-	ECTED TO CONSTR	RUCTION TRAFF	IC LOADING DURING	
2. CONCRETE PIPES DAMAGED DUE TO CONSTRUCTION LOADS SHALL BE REPLACED & RELIAID AT THE CONTRACTOR'S OUT THE OWNER OF THE		CONSTRUCTION	UNLESS THE PIPE S	TRENGTH CHARACTI	ERISTICS HAVE BEE	EN COMPUTED	AND APPROVED BY THE	
Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan	2.	CONCRETE PIPE						
1 + 40 0 1 in 30 1 in 30 1 in 30 1 in 30 0.05 1 + 50 14.50 14.50 1.50 0.05 0.05 14.50m ROAD RESERVE CORONADO WAY 14.50 1.50 0.05 1.50 Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan Weither the second s			ζ			RECY		
1 + 40 0 1 in 30 1 in 30 1 in 30 1 in 30 0.05 1 + 50 14.50 14.50 1.50 0.05 0.05 14.50m ROAD RESERVE CORONADO WAY 14.50 1.50 0.05 1.50 Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan Weither the second s	8) \		WATE	SEWE GAS :	BOL	
1 + 40 0 1 in 30 1 in 30 1 in 30 1 in 30 0.05 1 + 50 14.50 14.50 1.50 0.05 0.05 14.50m ROAD RESERVE CORONADO WAY 14.50 1.50 0.05 1.50 Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan Weither the second s	IMS 0		\rangle		<u>ER 3.10</u>	<u>ER 1.0</u> 2.10 WATE	JNDAF	
1 1 40 0 1 1 30 1 1 30 1 1 30 1 1 30 1 1 30 1 1 30 0 0 0 285 3.65 2.80 1.50 0.05 14.50m 14.50 14.50 14.50 14.50 14.50m ROAD RESERVE CORONADO WAY 14.50 14.50 Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan Neuways Ref PROJECT / DRAWING No. SHEET No. REVISIO	18 8						RY LIN	
1 in 30 1 in 30 1 in 30 0	1 in	600B2						
2.85 3.65 3.65 2.80 0.05 14.50 14.50m ROAD RESERVE <u>CORONADO WAY</u> Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan MELWAYS REF PROJECT / DRAWING No. SHEET No. REVISIO			1 in 30	1 in 30				
2.85 3.65 3.65 2.80 1.50 0.05 14.50 14.50m ROAD RESERVE <u>CORONADO WAY</u> Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan	6							
14.50 14.50m ROAD RESERVE CORONADO WAY Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan								
14.50 14.50m ROAD RESERVE CORONADO WAY Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan								
14.50m ROAD RESERVE CORONADO WAY Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan MELWAYS REF	-	2.85	3.65	3.65	2.80	1.50	0.05	
CORONADO WAY Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cover Plan	-			14.50				
ORA Wyndham City Council Road and Drainage Road and Drainage Welways Ref PROJECT / DRAWING NO.								
PRA Road and Drainage Weith Cover Plan MELWAYS REF PROJECT / DRAWING NO.			Alamo	•			eit - Stage 1	_
MELWAYS REF PROJECT / DRAWING NO. SHEET NO. REVISIO								
MELWAYS REF PROJECT / DRAWING No. SHEET No. REVISIO)k	2		K0		•		
MELWAYS REF PROJECT / DRAWING No. SHEET No. REVISIO	- In-	i.				AT 1		
					<u>Ω1</u>)N


GENERAL NOTES (WYNDHAM CITY COUNCIL)


OFFICER

THE WORKS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE CURRENT EDCM ADDENDUM STANDARD

THE CONTRACTOR IS RESPONSIBLE FOR SAFETY OF WORK ON SITE IN ACCORDANCE WITH APPROPRIATE LEGISLATION. THE CONTRACTOR SHALL ERECT AND MAINTAIN ALL SHORING, PLANKING AND STRUTTING. DEWATERING DEVICES, BARRICADES, SIGNS, LIGHTS, ETC. NECESSARY TO KEEP WORKS IN A SAFE AND STABLE


DRAWINGS AND SPECIFICATIONS. WORKS TO BE CARRIED OUT TO THE SATISFACTION OF COUNCIL'S SUPERVISING

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-03.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:49:01 AM

 $\begin{array}{c|c} \text{SHEET NO.} & \text{REVISION} \\ \hline 03 \ of \ 20 & 0 \end{array}$

			U2	U3	U4	U5 U6	U7	U8	
				CH6.75 RL42.9	8		CH20.24 R_42.85	CH26.98 RL42.81	
HORIZONTAL GEOMETRY		<	I	_=13.49m VC	15.00m HC	><	R=-8.60m HC L=13.49m VC	>	HORIZONTAL GEOMETRY
VERTICAL GEOMETRY DATUM RL42	<	-0.5%				-0.98%	-0.5%	2<	
DESIGN LIP LEVEL		43.01- 43.01-	42.99	42.97- 42.97-	42.94-	42.91- 42.91- 42.90-	42.87- 42.86- 42.86-	42.81-42.81-	DESIGN LIP LEVEL
DESIGN BACK LEVEL		43.12 43.12	43.10	43.08 43.08	43.05	43.02 43.02 43.01	42.98 42.97 42.97	42.99	DESIGN BACK LEVE
EXISTING SURFACE		42.99 42.98	42.97	42.95 42.95	42.93	42.92 42.92 42.91	42.91 42.91 42.91	42.93 42.93	EXISTING SURFACE
NORTHING		5808439.40 5808439.24	5808438.91	5808438.47 5808438.42	5808437.62	5808436.16 5808436.16 5808435.38 5808435.38	5808434.35 5808434.53 5808435.36	5808438.65 5808438.32	NORTHING
EASTING		292166.81 292168.00	292170.33	292173.50 292173.85	292177.06	292180.02 292180.03 292181.61 292181.61	292185.00 292186.20 292186.91	292191.06 292191.57	EASTING
BACK KERB LINE		0.00 1.20	3.55	6.75 7.11	10.42	13.48 13.73 15.51	19.03 20.24 20.91	26.31 26.98	BACK KERB LINE

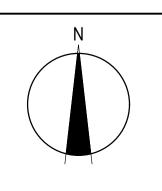
LIP LINE U

DATUM RL42 DESIGN LIP LEVEL DESIGN BACK LEVEL

	X1	(X2	(X3)) (x	(4)
					\square	
		CH4.18 RL42.77				
HORIZONTAL GEOMETRY	<	R=-8.60m	HC	_ >	-	_
VERTICAL GEOMETRY DATUM RL42	< 0.5% ≥		0.7%			>
DESIGN LIP LEVEL	42.75-	42.77-	42.81-	42.84-	42.85-	42.80- 42.87-
DESIGN BACK LEVEL	42.86	42.88	42.92	42.95	42.96	42.90
EXISTING SURFACE	42.29	42.31	42.35	42.40	42.40	42.42 42.43
NORTHING	5808349.11	5808353.20	5808357.85	5808360.12	5808360.71	5808361.09 5808361.09
EASTING	292136.46	292137.01	292134.73	292130.19	292130.27	292127.59
BACK KERB LINE	0.00	4.18	9.459	14.63	15.72	17.34 18.43
		LIP LI	INE X			

VERTICAL GE
DATUM R

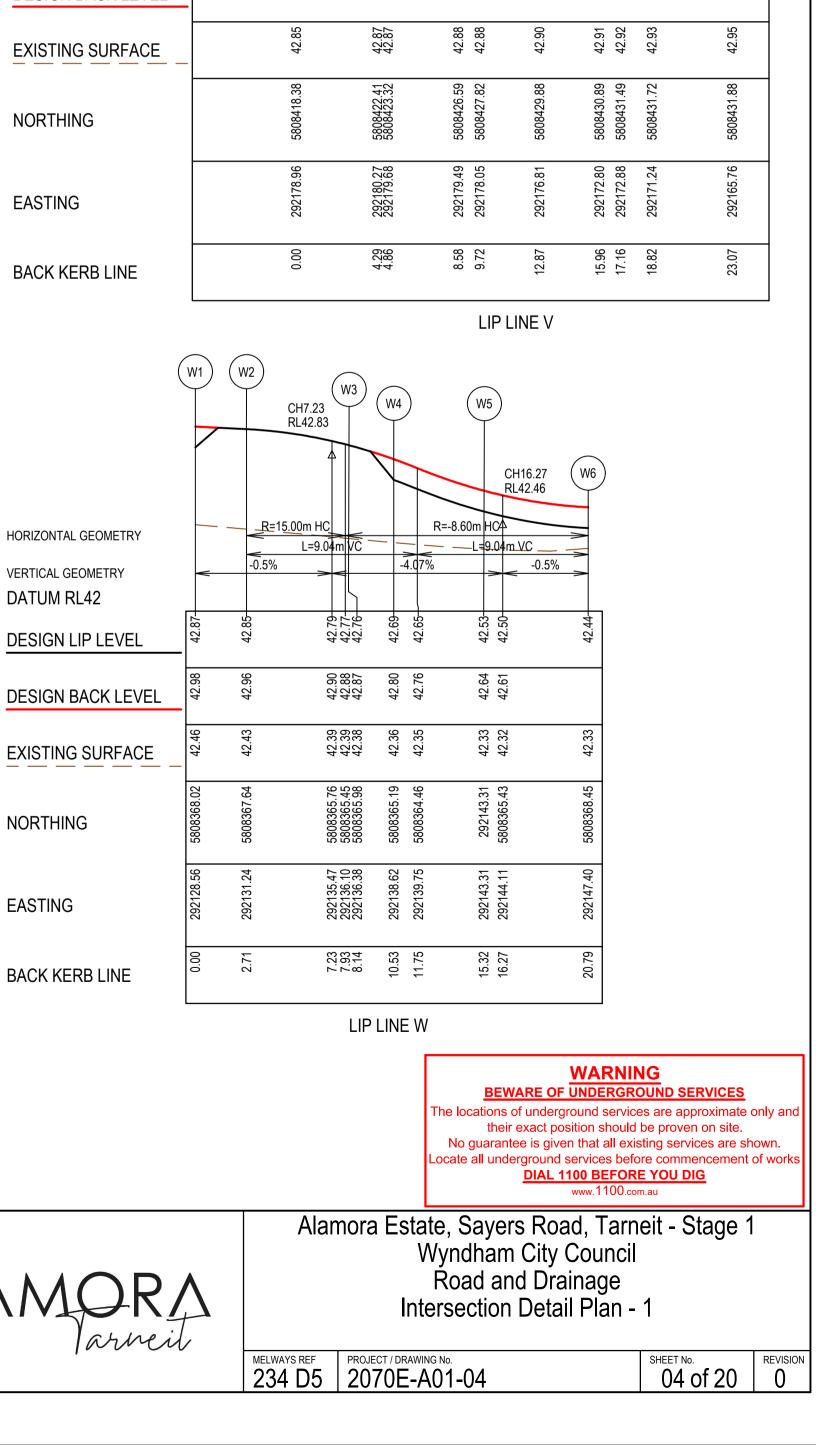
DESIGN LIP LEVEL


NORTHING

EASTING

BACK KERB LINE

LIP LINE X


) 2 4 0 0.2 0.4 Scale H1:200, V1:20 0 2 4 Scale 1:200 SCALE AS SHOWN AT A1

C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

ALAMORA Parmeit

(V6)

0.5%

43.01

43.12

 $\left(V4 \right)$

42.96⁻ 42.98⁻ 42.99-

43.80 43.09 43.10

CH12.87

RL42.96

(V3)

(V2)

CH4.29

RL42.72

L=8.58m VC

42.74-42.75

42.85 42.86

R=-8.60m HC

2.79%

84-84-

42

95 98

44

L=8.58m VC

8

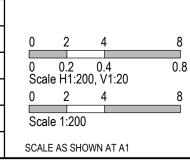
V1

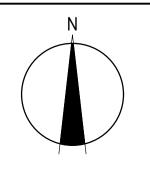
0.5%

5

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-05.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:52:10 AM

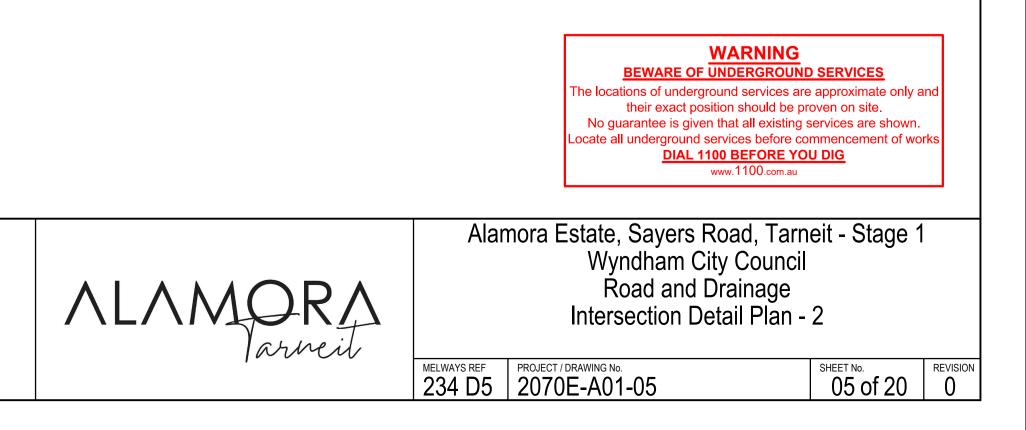
standard drawings or as nominated on hard copy plans provided by SMEC. Any digital information supplied by this office is for information

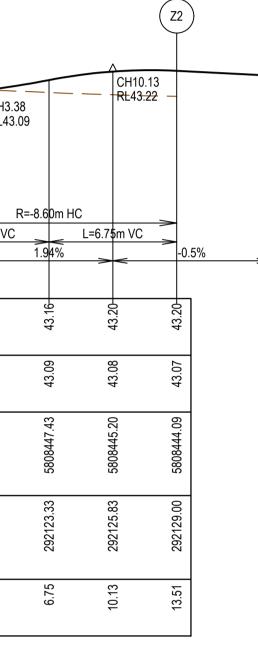

TITLE DRAFTER DESIGNER CHECKED AUTHORIS REFEREN

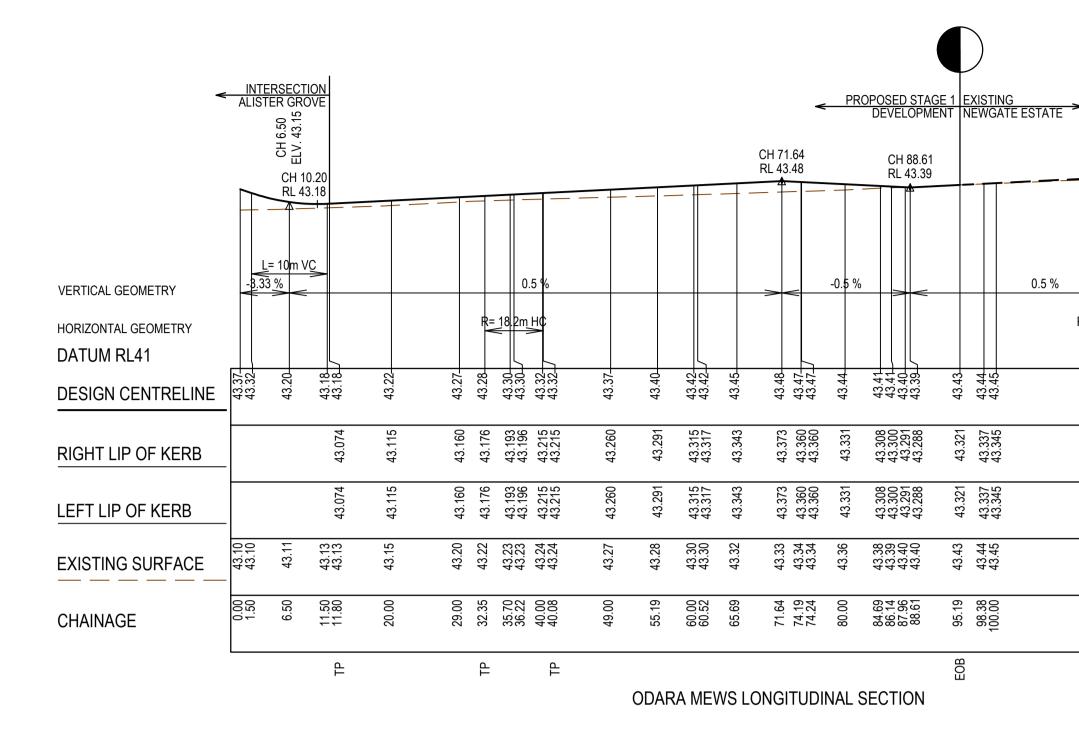


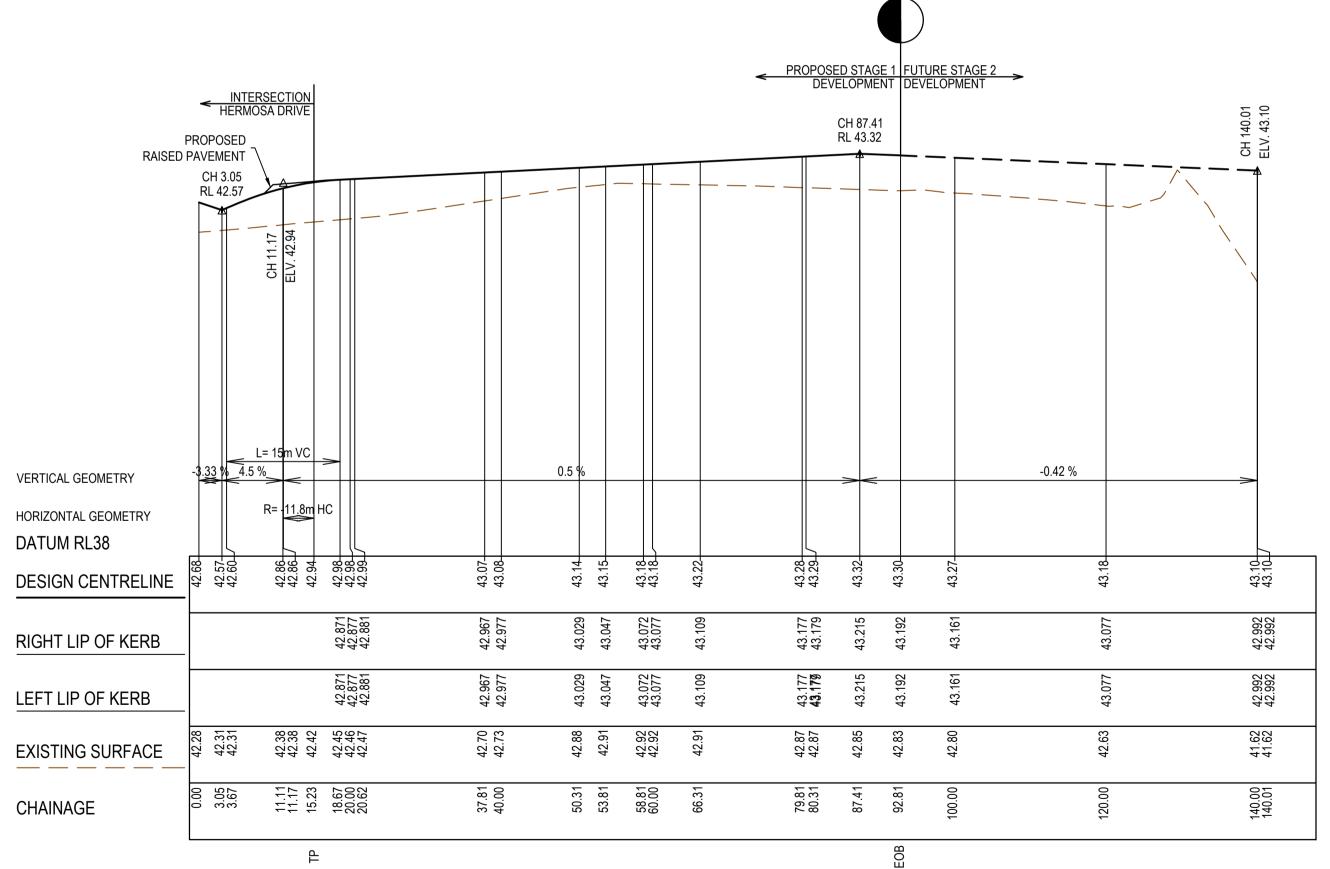
LIP LINE Y

		Z1	
		CH0 RL43.0	CH3 07 RL4
HORIZONTAL GEOMETRY VERTICAL GEOMETRY DATUM RL42	-0.5%		L=6.75m V(
DESIGN LEVEL		43.07-	43.10-
EXISTING SURFACE		43.12	43.10
NORTHING		5808453.80	5808450.45
EASTING		292121.67	292121.87
CHAINAGE		0.00	3.38
			L


	NAME
	A.Famili
२	A.Famili
	N.Freeman
SED	C.Sexton
CE No. 1	
CE No. 2	




Member of the Surbana Jurong Group ⓒ ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

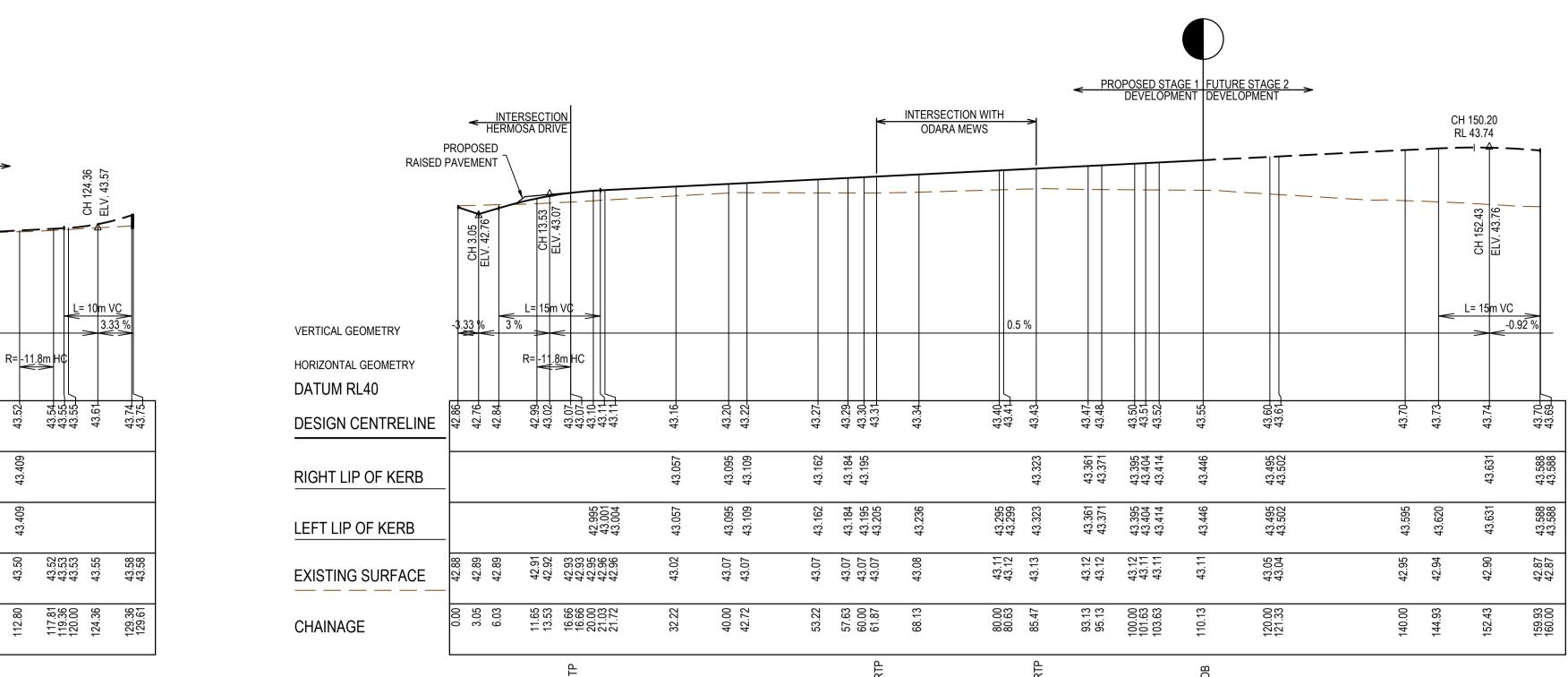


	RSECTION DETAIL PLAN							
ALL PROPOSED, FUTURE & EXISTING SERVICE LOCATIONS ARE SHOWN INDICATIVELY								
□= = ==	STORMWATER DRAIN, PIT & PROPERTY INLET							
□====	MAIN DRAIN							
•s	SEWER & MAINTENANCE STRUCTURES							
— — — — — H	HOUSE DRAIN							
GWR	SERVICE CONDUITS							
	TACTILE PAVERS							
	EXISTING STORMWATER DRAIN							
$\Box = = = = =$	EXISTING MAIN DRAIN							
<u> — Ех S</u> — —	EXISTING SEWER & MAINTENANCE STRUCTURES							
GWR	EXISTING SERVICE CONDUITS							
	EXISTING TACTILE PAVERS							
Fut D	FUTURE STORMWATER DRAIN							
	FUTURE MAIN DRAIN							
G-fut s —	FUTURE SEWER & MAINTENANCE STRUCTURES							
— — — — — H	FUTURE HOUSE DRAIN							
GWR	FUTURE SERVICE CONDUITS							
	FUTURE TACTILE PAVERS							
······	EDGE STRIP, SUBSOIL DRAIN, "NO ROAD" SIGN & BARRIER							
	PERMANENT SURVEY MARK							
٨	TEMPORARY BENCH MARK							
	PROPOSED DRIVEWAY & FOOTPATH							

LIP LINE Z

TITLE All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by DRAFTER SMEC. Any digital information supplied by this office is for information only. Any discrepancies should be discussed with the superintendent. DESIGNER CHECKED AUTHORISE REFEREN

Global-Mark.com.au®


Global-Mark.com.au[®] Global-Mark.com.au[®] REFEREN

AS CONSTRUCTED PLANS

The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

AS CONSTRUCTED

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-06.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:52:54 AM

ALISTER GROVE LONGITUDINAL SECTION

CORONADO WAY LONGITUDINAL SECTION

	NAME				
	A.Famili				
ł	A.Famili				
	N.Freeman				
ED	C.Sexton	0	5	10	20
CE No. 1		0	0.5	1	2
CE No. 2				00, V1:50 DWN AT A1	

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Longitudinal Sections - 1

 MELWAYS REF
 PROJECT / DRAWING No.

 234 D5
 2070E-A01-06

SHEET NO. REVISION 06 of 20 0

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-07.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:53:23 AM

The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

VERTICAL GEOMETRY

DATUM RL40

HORIZONTAL GEOMETRY

RIGHT LIP OF KERB

LEFT LIP OF KERB

EXISTING SURFACE

CHAINAGE

DESIGN CENTRELINE

R= 122.65m HC

43.

43.54

_<u></u>Ω

43

<u></u>

TITLE REFERENCE

All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by SMEC. Any digital information supplied by this office is for information only. Any discrepancies should be discussed with the superintendent.

EXISTING PROPOSED STAGE 1 NEWGATE ESTATE DEVELOPMENT

43.33 43.33

43.229 43.225

43.229 43.225

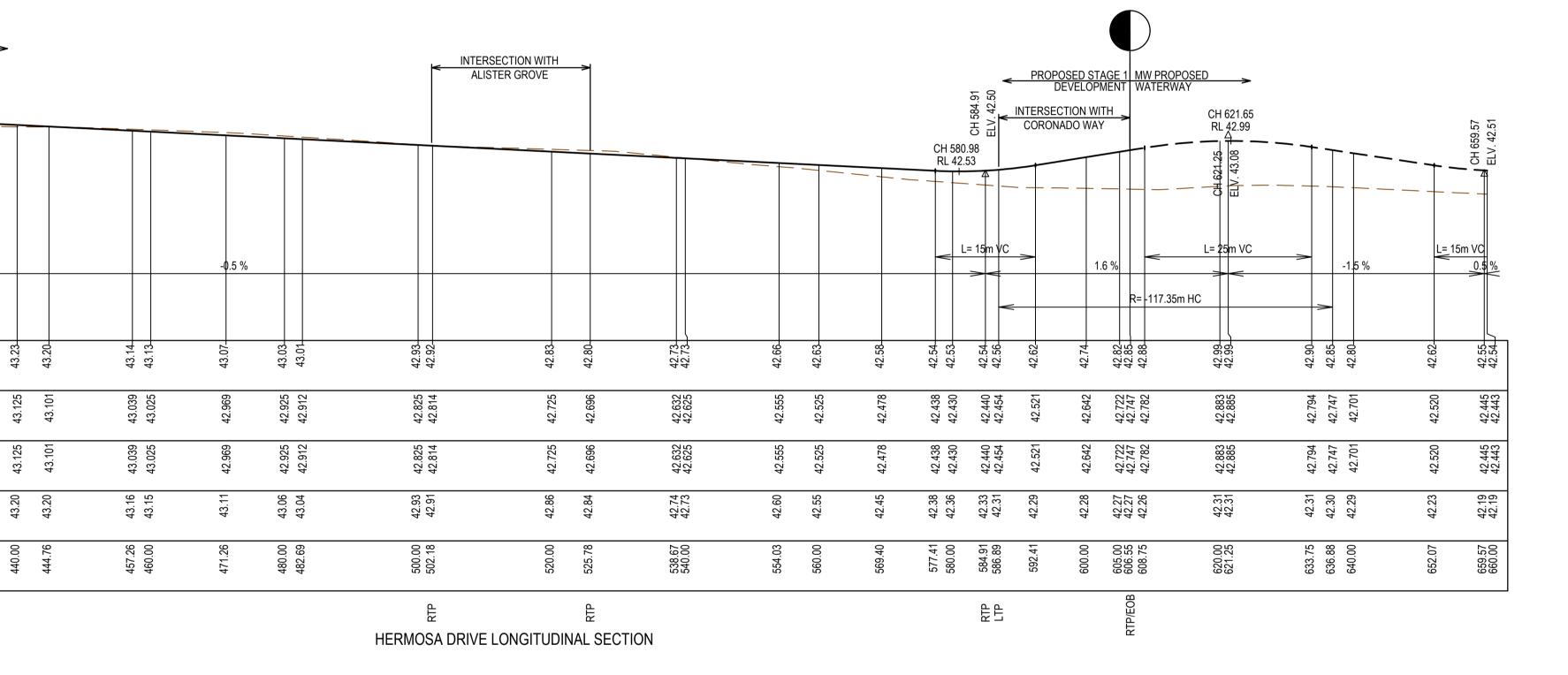
43.25 43.25

419.29 420.00

EOB

<u>۲</u>

<u></u>



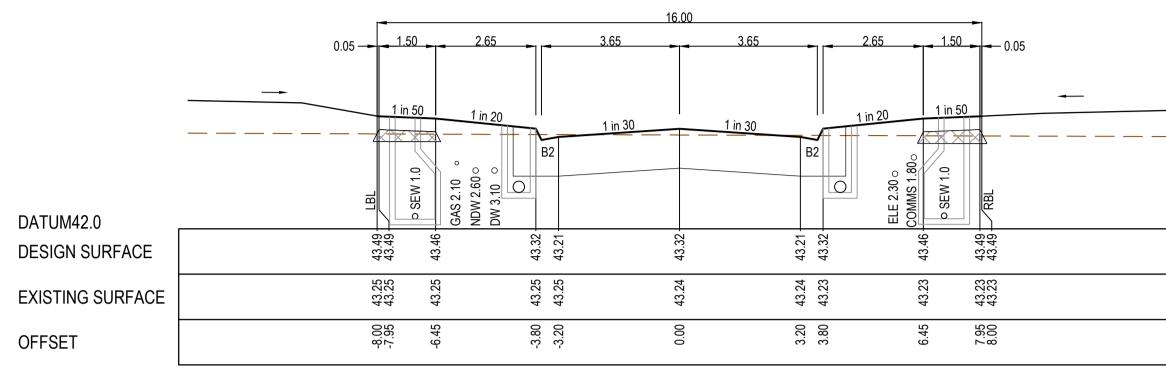
DRAFTER

Global-Mark.com.au[®] Global-Mark.com.au[®] REFERENCE I

DESIGNER CHECKED AUTHORISED

AS CONSTRUCTED PLANS

	NAME				
	A.Famili				
	A.Famili				
	N.Freeman				
)	C.Sexton	0	1	2	
No. 1		0	0.5	1	
No. 2				00, V1:50 OWN AT A1	


/	۱L	. ^	M

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Longitudinal Sections - 2

MELWAYS REF	PROJECT / DRAWING No.				
234 D5	2070E-A01-07				

SHEET NO. REVISION 07 of 20 0

TP CH 40.08

	 1 in 5(1 11 18.9		<u>1 in 30</u>	<u>1 in 30</u>		1 in 19.7	1 in 50	×
DATUM42.0 DESIGN SURFACE	43.46 LBI 43.46	43.43	43.29	43.18	43.28	43.18	43.29	43.42	43.45 43.45 RBI
EXISTING SURFACE	43.22 43.22	43.22	43.22	43.22	43.22	43.22	43.22	43.22	43.21
OFFSET	-8.00	-6.45	-3.80	-3.20	00.0	3.20	3.80	6.45	8.00

TP CH 32.35

	 <u>1 in 50 1</u>	<u>in 15</u> 1	in 30 1 in	30
DATUM42.0 DESIGN SURFACE	43.39 43.39 43.36 43.36	43.18	43.18	43.07
EXISTING SURFACE	43.15 43.15 43.14 43.14	43.14 43.14	43.13	43.12
OFFSET	-8.00 -7.95 -6.45	-3.80 -3.20	0.00	3.20

DATUM42.0						
DESIGN SURFACE	53 909 - 000	43.39	43.30	43.07 -	43.18-	
EXISTING SURFACE	43 15	43.15	4.0.14 4.3.14 4.3.14	43.14	43.13	
OFFSET	10 100 190	-/.95 6.75	-0.43	-3.20	0.00	


TP CH 11.80

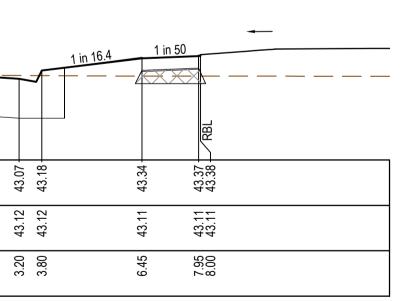
AS CONSTRUCTED PLANS All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by SMEC. Any digital information supplied by this office is for information only. Any discrepancies should be discussed with the superintendent.

The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

AS CONSTRUCTED

Global-Mark.com.au[®] Global-Mark.com.au[®] REFERENCE

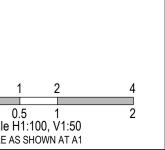
Global-Mark.com.au®


DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-08.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:53:51 AM

	 1 in 50) <u>1 in 2</u>		- <u>1 in 30</u>	<u> </u>	
DATUM42.0 DESIGN SURFACE	43.60	43.56	43.43	57 57 57 57	5	00.07
EXISTING SURFACE	43.44 43.44	43.44	43.43 43.43	57 57 57	2	
OFFSET	-8.00 -7.95	-6.45	-3.80 -3.20			

EOB CH 95.19

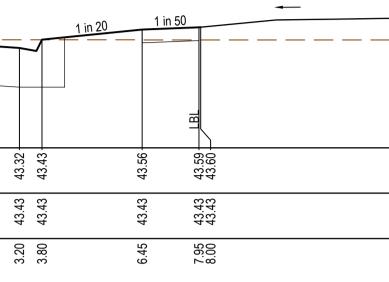
	 1 in 50	1 in 20		<u>1 in 30</u> <u>1 in 30</u>	1 in 20	1 in 50	<u> </u>
DATUM42.0 DESIGN SURFACE	43.64 LBL	43.60	43.47 43.36	43.47	43.36 43.47	43.60	_
EXISTING SURFACE	43.36 43.36	43.35	43.35 43.35	43.34	43.34 43.34	43.33 43.33	43.33
OFFSET	-8.00	-6.45	-3.80 -3.20	0.00	3.20 3.80	6.45 7.95	8.00

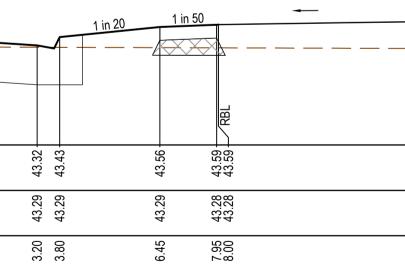

CH 74.19

	 <u>1 in 5</u>	0	1 in 20	~		<u>1 in 30</u>		<u>1 in 30</u>
DATUM42.0 DESIGN SURFACE	43.59 LI	43.56		43.43	43.32		43.42	
EXISTING SURFACE	43.31 43.31	43.31		43.31	43.30		43.30	
OFFSET	-8.00 -7.95	-6.45		-3.80	-3.20		0.00	

CH 60.52

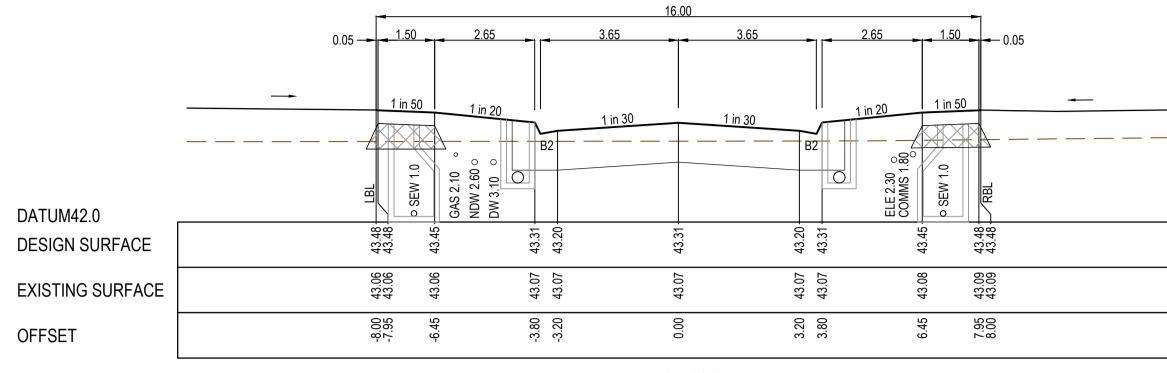
	NAME	
	A.Famili	
	A.Famili	
	N.Freeman	
ED	C.Sexton	0
E No. 1		0 (
E No. 2		Scale I SCALE A




Member of the Surbana Jurong Group C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

ALAMORA Varmeit

STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE EXISTING SURFACE



Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cross Sections: Odara Mews

ELWAYS REF	PROJECT / DRAWING No.
234 D5	2070E-A01-08

SHEET No. REVISION 0

RTP CH 61.87

DATUM42.0	 	<u>1 in 50 1 in 16.3</u>	<u>1 in 30</u>	1 in 30	1 in 16.7	1 in 50
DESIGN SURFACE	43.40	43.40	43.21	43.20	43.10	43.36
EXISTING SURFACE	43.03	43.03 43.03	43.05 43.05	43.07	43.08 43.08	43.08 43.09 43.09
OFFSET	80 00 00	- / .45 -6.45	-3.80 -3.20	0.00	3.20 3.80	6.45 7.95 8.00

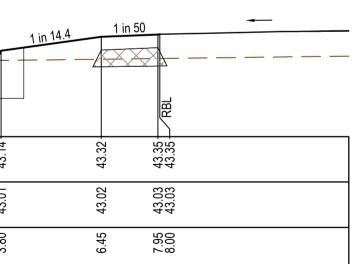
CH 40.16

DATUM42.0 DESIGN SURFACE	 43.36 LBL 43.35	43:32	tin 14.3 43.03 43.03	1 in 30 1	43.03 43.14 43.14
EXISTING SURFACE	42.95 42.95	42.96	42.97 42.97	42.99	43.01 43.01
OFFSET	-8.00	-6.45	-3.80 -3.20	0.00	3.20 3.80

CH 26.16

The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

AS CONSTRUCTED


DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-09.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:54:35 AM

	 1 in 50	1 in 20		1 in 30	1 in 30			1 in 50	
DATUM42.0 DESIGN SURFACE	43.72 LBL	43.69	43.56 43.45		60.54 	43.45	43.56	43.69	43.72 43.72 RBL
EXISTING SURFACE	43.08 43.08	43.08	43.09 43.10		43.11	43.12	43.12	43.13	43.14
OFFSET	-8.00 -7.95	-6.45	-3.80 -3.20		0.00	3.20	3.80	6.45	8.00

CH 110.13

	 1 in 50 1	<u>1 in 20</u>	1 in	<u>30 1 in 20</u>	0 1 in 50	
DATUM42.0 DESIGN SURFACE	43.65 LBL 43.64 43.61	43.48	43.48	43.37 43.48	43.64 43.64 43.65 7BL	
EXISTING SURFACE	43.09 43.09 43.10 43.10	43.10 43.11	43.12	43.13 43.13	43.14 43.15 43.15	
OFFSET	-8.00 -7.95 -6.45	-3.80 -3.20	0.00	3.20 3.80	6.45 6.45 7.95 8.00	

CH 95.38

	 1 in 50	1 in 20		1 in 30	1 in 30		1 in 20	1 in 50		<u> </u>
DATUM42.0 DESIGN SURFACE	43.60 LBL 43.60	43.57	43.43	43.32	43.43	43.32	43.43	43.57	43.60 43.60 RBL	
EXISTING SURFACE	43.12 43.12	43.12	43.12	43.12	43.13	43.13	43.14	43.14	43.15 43.15	
OFFSET	-8.00	-6.45	-3.80	-3.20	0.00	3.20	3.80	6.45	7.95 8.00	

RTP CH 85.47

All setting out should be carried out in accordance		TITLE	NAME	
standard drawings or as nominated on hard co SMEC. Any digital information supplied by this o		DRAFTER	A.Famili	
only. Any discrepancies should be discussed with		DESIGNER	A.Famili]
Nanagement is go of sharesement As As	ental Management	CHECKED	N.Freeman	
A80 Starting SH2	in the second	AUTHORISED	C.Sexton	0 1
	AU3	REFERENCE No. 1		0 0.5 Scale H1:
Global-Mark.com.au [®] Global-Mark.com.au [®]	Global-Mark.com.au®	REFERENCE No. 2		SCALE AS S

0.5 1 H1:100, V1:50 IS SHOWN AT A1

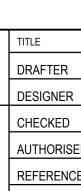
Member of the Surbana Jurong Group C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

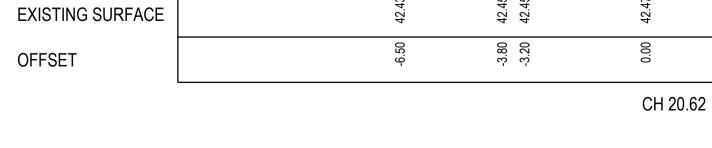
ALAMORA Varmeit

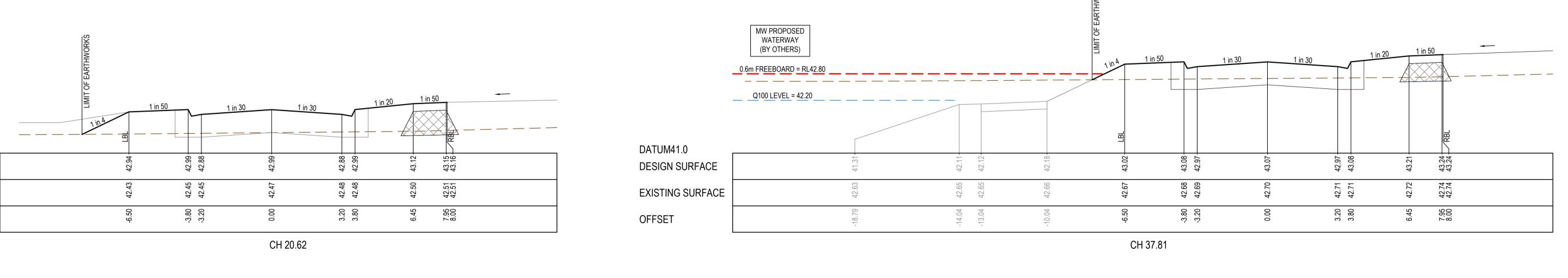
STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE EXISTING SURFACE

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cross Sections: Alister Grove

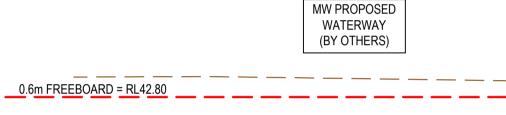
ELWAYS REF	PROJECT / DRAWING No.
234 D5	2070E-A01-09


DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-10.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:55:04 AM


AS CONSTRUCTED PLANS The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.


DATUM42.0

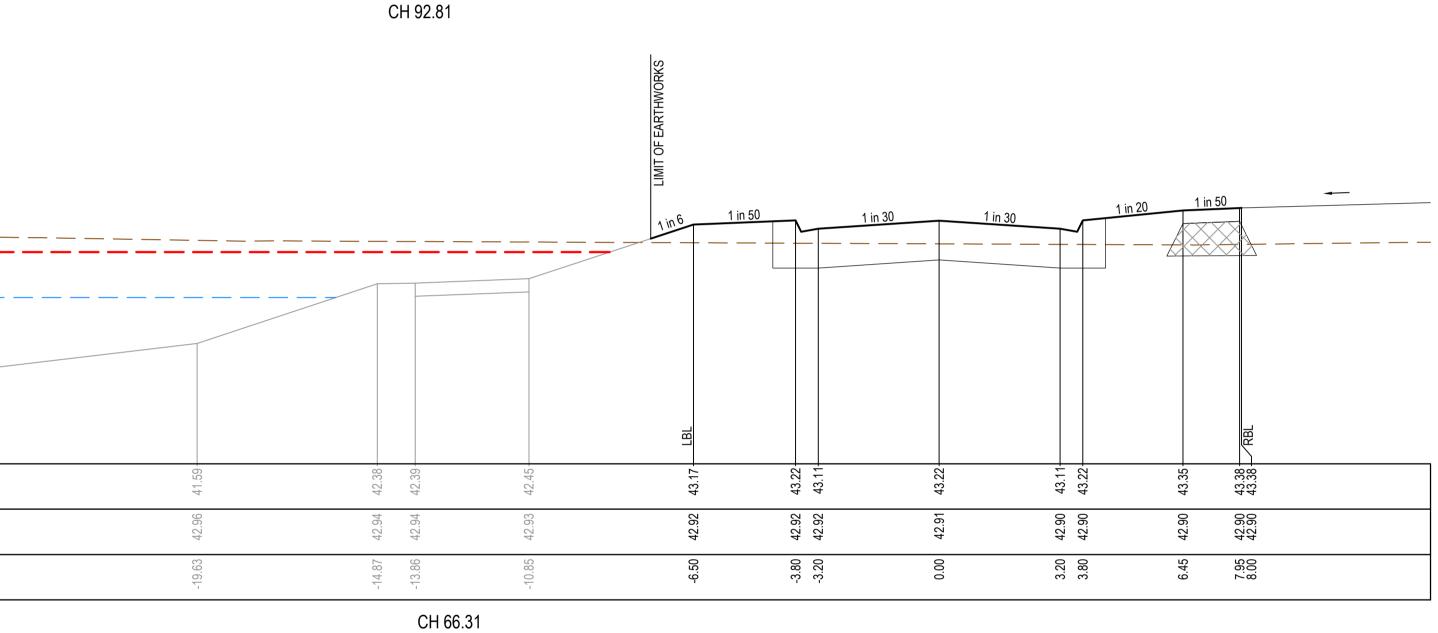
DESIGN SURFACE

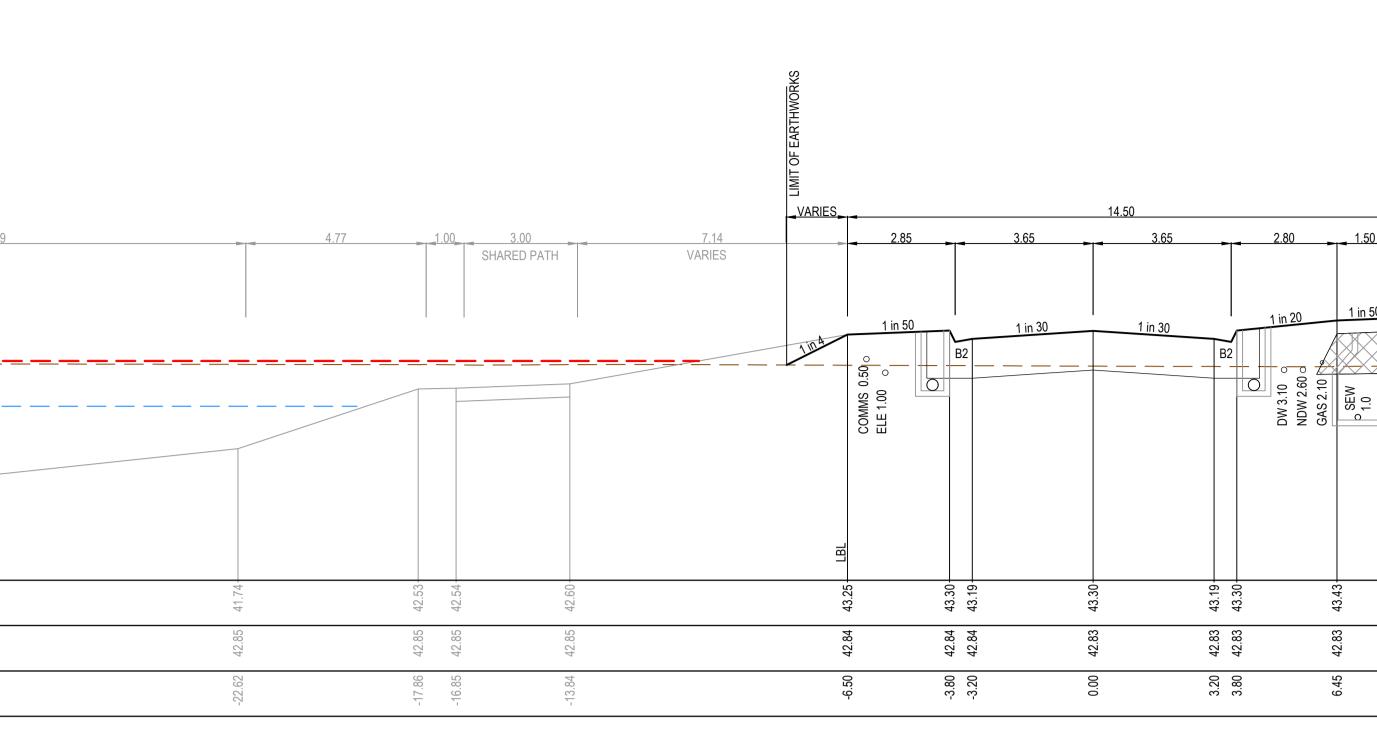


EXISTING SURF
OFFSET

DATUM40.0	
DESIGN SURFACE	40.77
EXISTING SURFACE	43.06
OFFSET	-33.95

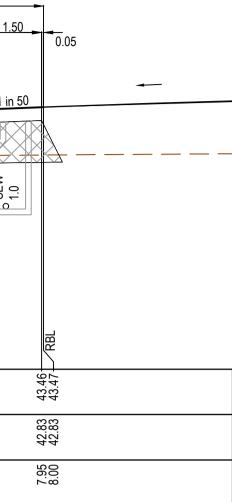
DATUM40.0	
DESIGN SURFACE	
EXISTING SURFACE	
OFFSET	


Q100 LEVEL = 42.20


	 	Q1	00 LEVEL = 42.30	
M40.0 GN SURFACE	40.80	40.80	41.29	
ING SURFACE	42.86	42.86	42.86	
ΞT	-35.51	-33.78	-30.97	

MW PROPOSED WATERWAY (BY OTHERS)

0.6m FREEBOARD = RL42.90


	NAME			
	A.Famili		SMEC	
२	A.Famili			
)	N.Freeman		Member of the Surbana Jurong Group	
SED	C.Sexton	<u>0 5 10 2</u> 0	C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St	
CE No. 1		0 0.5 1 2 Scale H1:500, V1:50	Melbourne, VIC 3008	
CE No. 2		SCALE AS SHOWN AT A1	Ph 03 9514 1500	

STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE EXISTING SURFACE

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cross Sections: Coronado Way

MELWAYS REF PROJECT / DRAWING No. 234 D5 2070E-A01-10


SHEET NO. REVISION 10 OF 20 0

AS CONSTRUCTED PLANS The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

AS CONSTRUCTED

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-11.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:55:33 AM

All setting out should be can standard drawings or as no SMEC. Any digital information

CHECKED AUTHORISED **REFERENCE** No. 1

0 5 10 20 0 0.5 1 2 Scale H1:500, V1:50 SCALE AS SHOWN AT A1

Collins Square, Tower 4, Level 20, 727 Collins St

Melbourne, VIC 3008 Ph 03 9514 1500

DATUM41.0 DESIGN SURFACE WETLAND SURFACE EXISTING SURFACE OFFSET

DATUM41.0

OFFSET

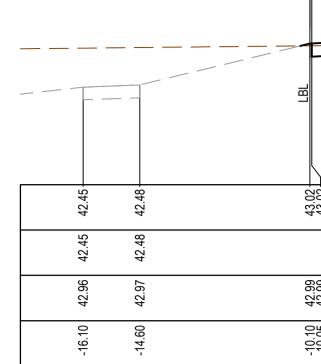
DATUM41.0

OFFSET

DESIGN SURFACE

WETLAND SURFACE

EXISTING SURFACE


DESIGN SURFACE

WETLAND SURFACE

EXISTING SURFACE

	EXISTI						25.50	LP 8.65		► 1	
		<u>1.50</u>	2.60	10.10 2.45	5	5 3.3			3.00 3 ED PATH	.50 <u>1.50</u> F/PATH	0.05
										n 40 1 in 50	
		1 in 40	1 in 40	<u>1 in 30</u>	<u> </u>	<u>301 in :</u>	30				
		LBL	10 ∘ 2.60 ∘ 3.10 ∘				0			2.30 o 1.80 o RBL	
			GAS 2.10 NDW 2.60 DW 3.10							ELE 2.30 o COMMS 1.80o RBL	
	 ∞	55	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				e 398	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
5 42.45	8 42.48	43.02- 43.02- 43.06-	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	43.13 42.98	42.91	43.01	42.91	42.98- 43.13 43.16-	43.22	43.31 43.34 43.34	
3 42.45	42.48									2 00	
42.96	42.97	42.99		43.02	5 43.03	43.04	43.06	43.07	43.09	43.11 43.12 43.12	
-16.10	-14.60	-10.10 -10.05		-5.95 -5.75	-3.05	0.00	3.05	5.75 5.95 7.35	10.35	13.85 15.35 15.40	
						CH 482.69					
									1 in 50	1 in 40 <u>1 in 50</u>	
		1 in 40	1 in 40	<u> </u>	30	in 301 ii	n 30 1 ir				
_											
		FBI								KBI	
42.45 -	42.48-	43.08 - 43.08 -	43.12 -	43.18 - 43.03 -	42.97	43.07	42.97	43.03 43.18 43.22	43.28	43.37 - 43.40 - 43.40 -	5
42.45	42.48										
43.01	43.02	43.05 43.05	43.06	43.08 43.08	43.09 43.09	43.11	43.12 43.13	43.14 43.14 43.14 43.14	43.16	43.17 43.18 43.18	
-16.10	-14.60	-10.10	-8.55	-5.95 -5.75	-3.80	0.00	3.05	5.75 5.95 7.35	10.35	13.85 15.35 15.35	
						CH 471.26					
								1 in 40	1 in 50	1 in 40 1 in 50	
			1 in 40	<u>1 in 3</u>	301	in <u>301</u> ii	n.301+				
		EBL								KBL	
42.47	42.50	43.21	43.25	43.32	43.10	43.20	43.10	43.17	43.41	43.53 43.53 43.53 43.53	222
42.47	42.50										
43.12	43.13	43.15 43.15	43.16	43.17 43.17	43.18 43.18	43.20	43.21	43.22 43.22 43.23	43.24	43.25 43.26 43.26	
-16.10	-14.60		-8.55	-5.95 -5.75	-3.05	0.00	3.05	5.75 5.95 7.35	10.35	13.35 15.35 15.40	
<u>,</u>	<u>,</u>	· · ·	·		· ·	CH 444.76			.		-
										1 in 30 1 in 50	
		<u>1 in 40</u>	<u>1 in 4</u>	0		in <u>301</u> ii	n 30	1 in 30	1 in 50	<u>1 in 30 1 in 50</u>	
			-								
42.71	42.74	43.18- 43.18-	43.22-		43.34 43.23	43.33	43.23 43.34	43.46	43.52	43.67 43.67	
42.71	42.74										
43.21	43.21	43.22 43.22	43.23		43.24	43.25	43.26 43.26	43.27	43.28	43.29 43.30 43.30	
34	-14.82	-10.10 -10.05	-8.55		-3.65 -3.05	0.00	3.05 3.65	7.35	10.35	13.85 15.35 15.35	
-16.34						CH 419.29					
-16.			<u> </u>					<u> </u>			 _
t in accordan	ce with MPA/Council's py plans provided by	TITLE	NAME A.Famili						S	MEC	Τ
t in accordan d on hard co blied by this c	py plans provided by office is for information ith the superintendent.	DRAFTER	NAME A.Famili A.Famili N.Freema						ber of the Surbana	MEC	

DATUM42.0 DESIGN SURFACE WETLAND SURFACE EXISTING SURFACE OFFSET

EARTHWORTHS UNDERTAKEN AS PART OF WETLANDS.

\times	$\langle \rangle$
	\times
$\times \times \times \times$	\times
	$\mathbf{\tilde{\mathbf{x}}}$
	\mathbf{x}

STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE EXISTING SURFACE

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cross Sections: Hermosa Drive Ch 419.29 - Ch 482.69 MELWAYS REF PROJECT / DRAWING No. 234 D5 2070E-A01-11 $\begin{array}{c|c} \text{SHEET No.} & \text{REVISION} \\ 11 \text{ of } 20 & 0 \end{array}$

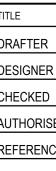
					-		25.50			>
			PROPOSED WATERW	0.05	5 <u>1.50</u> F/PATH	4.90 3.50	3.50	3.70 3. SHARE	00 3.50 D PATH	<u>1.50</u> 0.05 F/PATH
			INSTALL TEM BATTER TO I	IPORARY EXISTING	편 1	in 40 1 in 30	1 in 30	1 in 401 in	n 50 1 in 40	
				1in4			B2		1 11 40	1 in 50
					MMS 1.80 ° ELE 2.30 °				DW 3.10	AS 2:10
			DATUM41.0 DESIGN SURFACE		2.70 COM	42.75	42.85	2.76	12.70 N	42.65 67
			EXISTING SURFACE		42.18 4:	42.24 4:	42.27 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:	42.32	42.35	42.38
			OFFSET		-10.10	-3.65	3.65	7.35	10.35	13.85
	EARTHWORTHS		L				CH 608.55			
	UNDERTAKEN AS PART OF WETLANDS.			1 in 30 1 in 50	1 in 30	1 in 50				
		<u>1 in 40</u> <u>1 in</u>	30 1 in 30							
	Б					38L				
DATUM41.0 DESIGN SURFACE	42.43	42.55	42.54	42.67	42.73	42.85				
EXISTING SURFACE	42.31 42.31 42.31	42.32	42.33 42.33 42.33	42.37	42.41	42.46 42.48 42.48				
OFFSET	-10.10 -8.55	-3.65	0.00 3.05 3.65	7.35	10.35	13.85 15.35 15.40				
			RTP CH 584.91						1 in 40	1 in 50
					1 in 40	<u>1 in 30</u> 1 in 30	<u> </u>	1 in 40 1 in 50		
		DATUM41.0		<u> </u>						
			42.		42.67 42.67 42.71	42.77 42.55 42.55 42.55	42.66	42.62	42.86	42.95
				42.47	42.51 42.51 42.52	42.55 42.55 42.57 42.57	42.60 42.63 42.64	42.65 42.66 42.67	42.70	42.73 42.74 42.74
		EXISTING SURFACE		-	-10.10 -10.05 -8.55 -8.55 -8.55		0.00 42 3.05 42 3.80 42	5.75 42 5.95 42 7.35 42	0.35	13.85 13.85 15.35 15.35 15.35 15.40
				`• 		CH 554	4.03			
					in-4 in-4	10 1 1 in 3 0	1 in 3 0	1 in 301 in 50) <u>1 in 30</u>	1 in 50
				= = = = = = = = = = = = = = = = = = =						
		DATUM41.0	.42	.45	42.64	42.81	42.80		66.	43.14
		DESIGN SURFACE WETLAND SURFACE	4	2.45 42	422 422	42 43	42 42 42 42	42.	42	43 43
		EXISTING SURFACE	70 4	42.72 4	42.77 42.77 42.78	42.82	42.84 42.85 42.85	42.87	42.89	42.91
		OFFSET		-14.60	-10.10 -10.05 -8.55	-3.65	0.00 3.05 3.65	7.35	10.35	13.85 15.40 15.40
						CH 52	25.78		1 in 30	1 in 50
					in 40	1 in 30	1.in_301	<u>in 30 1 in 50</u>		
		DATUM42.0		 FBF						
			46 43 42.46 42.46		42.76	42.92.		43.05	43.1	43.22
		WETLAND SURFACE	85 84 42, 42,	<u>i</u>	42.88	42.90	42.93	2.95	2.96	42.97 42.98 42.98
		OFFSET	.16.10 .14.60 .42. .42.		-10.05 42:	-3.65 -3.05 -		7.35 42	10.35	13.85 13.85 15.35 15.40 15.40
			· · · ·	· · · · · · · · · · · · · · · · · · ·		CH 502				
The purpose of these as	AS CONSTRUCTED PLANS s-constructed plans is to update the design drawing during construction. Note that the levels shown on t	is to show significant standard	out should be carried out in accordance with MPA/C I drawings or as nominated on hard copy plans provi ny digital information supplied by this office is for info	ided by ormation DRAFTER	NAME A.Famili				SMEC	
levels, and have not been	verified by survey. All information shown on these p a Pty Ltd accept no responsibility for loss or damage	only. Any only are design only. Any only and the set of	discrepancies should be discussed with the superin	agenera CHECKED	A.Famili N.Freeman			Member of the	Surbana Jurong Group	$\wedge \wedge $
_	inappropriate usage of these plans.		OHS MA	AUTHORISED	C.Sexton	0 5 10 20			47 065 475 149 wer 4, Level 20, 727 Collins St	

		PROPO		1.50	4.90		3.50	25.50	3.70	3.00	3.50 1.50 0.05
			RWAY TEMPORARY TO EXISTING	F/PATH	4.30					RED PATH	<u>F/PATH</u>
		DATIEN			1 in 40	B2	1 in 30	_1 in 30			1 in 40 1 in 50
		_			ELE 2.30 0						DW 3.10 0 NDW 2.60 0 GAS 2.10 0
	DATUM41. DESIGN SU			42.70)	42.86	42.85	42.75	42.76	42.70	42.62
	EXISTING	SURFACE		42.18		42.24	42.27	42.29	42.32	42.35	42.38 42.40 42.40
	OFFSET			-10.10		-3.65	00.0	01 600 EE	7.35	10.35	13.85 15.35 15.40
								CH 608.55			
1 in	30 1 in 30		1 in 30	1 in 50 1 ir	n 30 1 in						
				<u>-</u> 25 <u>2</u>		RBL					
42.55	42.54	42.44	42.67	42.73	42.85	42.88					
42.32	42.33	42.33 42.33	42.37	42.41	42.46	42.48 42.48					
-3.65 -3.05	00.00	3.05 3.65	7.35	10.35	13.85	15.35 15.40					
	RTP CH	1 584.91								so 1 in 4	10 1 in 50
				1 in 4		1 in 30 1	<u>n 30 1 in</u>	0 <u>301 in 30</u>	1 in 40 1 in 5	50 1 in 4 	
				E							RE
UM41.0		42.40	42.43	42.67	42.77	42.55	42.66	42.55	42.62	42.86	422.38
ILAND SURFACE		42.40	42.43								
STING SURFACE		42.46	42.47	42.51 42.51 42.52	42.55 42.55	42.57 42.57	42.60		42.65 42.66 42.67 42.67	42.70	42.73 42.74 42.74
SET		-16.10	-14.60	-10.10 -10.05 -8.55	-5.95 -5.75	-3.05	0.00	3.05	5.75 5.95 7.35 7.35	10.35	13.85 15.35 15.40
							CH 554.03				30 1 in 50
					1 in 40		in 3 0 <u> </u>	in 30 1 ir	1 30 <u>1 in</u>	50 1 in	<u></u>
				TBL							
DATUM41.0 DESIGN SURFACE		42.42	42.45	42.64		42.81	42.80	42.70	42.93	42.99	43.11
WETLAND SURFACE		42.42	42.45								
EXISTING SURFACE		0 42.70	0 42.72	6 42.77 5 42.77 5 42.78		5 42.82 5 42.82	0 42.84	5 42.85	5 42.87	5 42.89	5 42.91 6 42.91 7 42.91
OFFSET		-16.10	-14.60	-10.10 -10.05 -8.55		-3.65	00.00	3.05	7.35	10.35	13.85 15.35 15.40
							CH 525.78		30 <u>1 in 5</u>	50 <u>1 in 3</u>	30 1 in 50
					1 in 40		<u>.301 in 3</u>				
		42.43	42.46	42.76 LBL 42.76 42.80		42.92	42.92	42.92	43.05	43.11	43.22 43.25 43.26 RB
DESIGN SURFACE		42.43 42.	46	422		42	42	42	43.	43	
EXISTING SURFACE		42.84 42	42.85	42.88 42.88 42.89 42.89		42.90	42.91	42.93	42.95	42.96	42.97 42.98 42.98
OFFSET		-16.10	-14.60	-10.10 -10.05 -8.55 -4,		-3.65 42	0.00	3.65 45	7.35 42	10.35 42	13.85 15.40 15.40 42
			<u>``</u>				CH 502.18			-	
v significant standar	g out should be carried out in acco d drawings or as nominated on ha	rd copy plans p	provided by	NAME						SME	· · · · · · · · · · · · · · · · · · ·
ns are design SMEC. A only. Any	ny digital information supplied by discrepancies should be discuss	this office is for ed with the sup	erintendent. DESIGN	IER A.Famili		4			Mombor of th	e Surbana Jurong G	
	Nent. 150 9001 SHOWENT ASIA	AS 4801		ED N.Freem RISED C.Sextor		0 5 10	20		C AE	BN 47 065 475 149 Tower 4, Level 20, 727 Collin:	

		POSED MW TERWAY	0.05 <u>1.50</u> F/PATH	4.90		3.50	<u>25.50</u>	3.70 SH	3.00	3.50 <u>1.50</u> 0.05 F/PATH	
	INSTAL BATTE	L TEMPORARY R TO EXISTING	[B]	1 in 40		1 in 30	1 in 30	1 in 40	1 in 50	<u>1 in 40</u> 1 in 50	
					B2		B2				
				COMMS 1.80 o ELE 2.30 o						DW 3.10 0 NDW 2.60 0 GAS 2.10 0	
	DATUM41.0 DESIGN SURFACE		42.70	55	42.86	42.85	42.75	42.76	42.70	42.59 42.59 42.59 42.59 42.59 42.59 42.59	
	EXISTING SURFAC		42.18		42.24 4	42.27 4	42.29 4 42.29 4	42.32 4	42.35 4	42.38 42.40 42.40 42.40	
	OFFSET		-10.10		-3.65 -3.05	00.0	3.05 3.65	7.35	10.35	13.85 15.35 15.40	
							CH 608.55				
	44.55	1 in 30	1 in 50 1	<u>in 30 1 in</u>	50						
1 in 30	1 in 30				<u> </u>						
					RBL						
42.54	42.55		42.67	42.85	42.88						
42.33	42.33		42.37	42.46	42.48						
0.00	3.05 3.65		7.35	13.85	15.35 15.40						
	RTP CH 584.91									1 in 50	
			1 in		in 30	1 in 30 1	<u>in 30 1 in 3</u>	<u>30 1 in 40 1 ir</u>	<u>50 1 in</u>	40 1 in 50	
			EB							Land Land Land Land Land Land Land Land	
	42.40 -	42.43	42.67 - 42.67 - 42.67 -	42.77 42.62 -	42.55-	42.66-	42.55 -	42.77 – 42.77 – 42.80 –	42.86 -	42.95 - 42.98 - 42.98 -	
	42.40	42.43	<u></u>	1010			~ -		-	~	
	10 42.46	50 42.47	10 42.51 15 42.51 15 42.52	95 42.55 42.55	30 42.57 35 42.57	00 42.60)5 42.63 30 42.64	75 42.65 35 42.65 35 42.67 35 42.67	35 42.70	42.73 42.73 42.74 42.74	
	-16.10	-14.60	-10.10 -10.05 -8.55	-5.95 -5.75	-3.80 -3.05	0.0	3.05	5.75 5.95 7.35	10.35	13.85 15.35 15.40	
						CH 554.03			n 50 <u>1 i</u>	n 30 1 in 50	
				1 in 40		-1 in 3 0	<u>1 in 30</u>	1 in 301			
ACE	42.42-	42.45	42.64 - 42.64 - 42.68 -		42.81-	42.80-	42.70 -	42.93 -	42.99-	43.11- 43.14- 43.14-	
RFACE	.0 42.42	2 42.45			2 2	4	5 <u>5</u>	2	6	5 55	
FACE	.10 42.70	60 42.72	10.10 42.77 10.05 42.77 -8.55 42.78		-3.65 42.82 -3.05 42.82	0.00 42.84	3.05 42.85 3.65 42.85	7.35 42.87	10.35 42.89	13.85 42.91 15.35 42.91 15.40 42.91	
	-16.10	-14.60	-10.10 -10.05 -8.55			CH 525.78	ო ო 	~	6	9 <u>9</u> 9	
				1 in_40	1		n 30	1 in 30 1 ii	n 50 1 ir	n 30 1 in 50	
										E E E E E E E E E E E E E E E E E E E	
CE	42.43	42.46	42.76 LBL 42.76 42.80		42.92	42.92	42.81	43.05	43.11	43.22 43.25 43.26 R	
	42.43	42.46	<u>44</u> 4				4 4	4	4		
ACE	42.84	42.85	42.88 42.88 42.89		42.90	42.91	42.93	42.95	42.96	42.97 42.98 42.98	
	-16.10	-14.60	-10.10 2 -10.05 2 -8.55 2		-3.05 4	00.0	3.05 2	7.35	10.35	13.85 15.35 15.40	
L	· ·					CH 502.18					
standard drawings or a	carried out in accordance with s nominated on hard copy plan	s provided by	rle NAME RAFTER A.Fami	i					SMI	= C	
SIVIEC. Any digital inform	nation supplied by this office is should be discussed with the s		ESIGNER A.Fami							Group	

	3.00	<u>3.50 1.50 0.</u> 05
SHARE	ARED PATH	F/PATH
40 <u>1 ir</u>	1 in 50	1 in 40 1 in 50
		· · · · · · · · · · · · · · · · · · ·
		DW 3.10 0 NDW 2.60 0 GAS 2.10 0
42.76	42.70	42.59 6 - 42.59
42.32 43	42.35 4;	42.40 41 42
7.35 4	10.35	13.85 15.35 4 4 4 4 4 4
	~	~ ~~
1 in 40 1 in 50	50 <u>1 ir</u>	n 40 1 in 50
42.80	42.86	42.95 42.98 42.98
42	42	4 42
42.67	42.70	42.73 42.74 42.74
7.35 4.	10.35	13.85 15.35 15.44 15.40
		~ ~~
1 in 50	n 50 <u>1</u>	<u>in 30 1 in 50</u>
1 in 50		
42.93	42.99	43.11
42.87	42.89	42.91 42.91 42.91
7.35	10.35	13.85 15.35 15.40
1 in 50	50 <u>1i</u>	in 30 1 in 50
		KBL
43.05	43.11	43.22 43.22 43.25
42.95	42.96	42.97 42.98 42.98
7.35	10.35	13.85 15.35 15.40
	SM	FC
	W	
	Member of th ©	Member of the Surbana Jurong © ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Co

	PROPOSED MW				25.50			
	WATERWAY	0.05 - 1.50 F/PATH	4.90	3.50	3.50	3.70 SHA	3.00 RED PATH	<u>3.50 1.50 0.05</u> F/PATH
	INSTALL TEMPORARY BATTER TO EXISTING	LBL	1 in 40	1 in 30	1 in 30	1 in 40	<u>1 in 50 1</u>	
		11/14	B2		B2			1 in 40 1 in 50
		COMMS 1.80 0						DW 3.10 0 NDW 2.60 0 GAS 2.10 0
C	ATUM41.0	COMMS						
C	ESIGN SURFACE	42.70	42.86	42.85	42.75	42.76	42.70	42.62 - 42.59 - 42.59 -
E	XISTING SURFACE	42.18	42.24 42.24	42.27	42.29	42.32	42.35	42.38 42.40 42.40
С	OFFSET	-10.10	-3.65	0.00	3.05	7.35	10.35	13.85 15.35 15.40
					CH 608.55			
	1 in 30	1 in 50 <u>1 in 30</u>	1 in 50					
1 in 30								
			SIL					
42.55	42.44	42.67	42.88 + + + 2.88 + + + 2.88 + + + + 2.88 + + + + + + 2.88 + + + + + + + + + + + + + + + + + +					
42.32	42.33 42.33	42.37	42.46					
-3.65 -3.05 0.00	3.05	7.35	13.85 15.40 15.40					
	RTP CH 584.91						4 :- 4	10 1 in 50
		1 in 40	1 in 30 1	1 in 30 1	in <u>30 1 in 3</u>	301 in 40 in	50 1 in 4 	
								L R R
ACE	42.40	42.67	42.62	42.66	42.55	42.62	42.86	42.95
RFACE	42.40	44 4		7	7 7		7	
RFACE	42.46	42.51 42.52 42.52	42.55 42.55 42.57 42.57	42.60	42.63 42.64	42.65 42.66 42.67	42.70	42.73 42.74 42.74
	-16.10 -	-10.10 -8.55	-5.95 2	00.0	3.05 2	7.35	10.35	13.85
				CH 554.03			~	
						1 in 30 1 ir	50 <u>1 in 1</u>	30 1 in 50
		— — — — — — — — — — — — — — — — — — —	1 in 40	-1 in 3 0 <u> </u>	l-in-30	<u>1 in 30 1 in</u>		
41.0 SURFACE	42.42	42.64	42.81	42.80	42.70	42.93	42.99	43.14
	42.42 42.45 4		~ ~	7		4	7	
IG SURFACE	42.70 42.72 4	42.77 42.77 42.78	42.82	42.84	42.85	42.87	42.89	42.91 42.91 42.91
-	-16.10 4	-10.10 -10.05 -8.55 -8.55	-3.65 4	0.00	3.05 4	7.35	10.35	13.85
				CH 525.78			~	
					20	1 in 30 1 in	50 1 in 3	30 1 in 50
		i	<u>n401</u>		1-30			
2.0	46 43		81		92 92	22		2655 22
	43 42.43	42.76 - 42.76 - 42.80 -	42.92	42.92	42.81-	43.05	43.11	43.22- 43.25- 43.26-
O SURFACE	42.	ගුගු ග	9 2		<u>ന</u> ന	Ū	é	88 89
SURFACE	0 42.84	0 42.88 5 42.88 42.88 42.88	15 42.91 15 42.91	42.91	15 15 15 12.93	42.95	5 42.96	55 42.97 55 42.98 42.98
	-16.10 -14.60	-10.10 -10.05 -8.55	-3.65	8.0	3.05	7.35	10.35	13.85 15.40 15.40
			Γ	CH 502.18				
standard drawings or as no SMEC. Any digital information	ied out in accordance with MPA/Council's minated on hard copy plans provided by on supplied by this office is for information	TITLE NAME DRAFTER A.Famili					SME	:C
only. Any discrepancies sho	uld be discussed with the superintendent.	DESIGNER A.Famili CHECKED N.Freeman				Member of th	💘 e Surbana Jurong G	
OHS Mo 00	agement. AGIN to agental Management is often	AUTHORISED C.Sexton	0 5 10	20		C A	BN 47 065 475 149 Tower 4, Level 20, 727 Collins	


			SED MW RWAY	0.05	<u>1.50</u> F/PATH	4.90		3.50	- > 4	25.50 3.50	3.70		3.00 RED PATH	3.50	1.50 F/PATH	<u>_0.</u> 05
		INSTALL BATTER	TEMPORARY TO EXISTING	LBL							<i></i>					RBL
				1104		1 in 40	B	1 in 30		1 in 30	1 in 40		<u>in 50</u>	1 in 40	1 in 50	
				_ Z	1.800 2.30 0						φ			DW 3.10 0 NDW 2.60 0 GAS 2.10 0		
	DATUM41	.0			COMMS 1.80 ° ELE 2.30 °									DW 3 NDW 6AS 2		\
	DESIGN S	URFACE		42.70			42.86		42.85	42.75		2 42.76	42.70			42.59
	EXISTING	SURFACE		0 42.18			5 42.24		0 42.27	5 42.29 5 42.29		5 42.32	5 42.35			42:40
	OFFSET			-10.10			-3.65	-3.0 	0.00	ଞ୍ଚ ଞ୍ଚ CH 608.55		7.35	10.35		13.85	15.40
										CH 008.55						
<u>1</u> i	in 30 1 in 30		1 in 30	1 in 50	1 in 30	1 in !										
		\mp	&		<u> </u>											
							RBL									
42.55	42.54	42.44	42 67	42 73		42.85	42.88									
42.32	42.33	42.33 42.33	42.37			42.46	42.48									
-3.65	00.0	3.05 3.65	7.35	10.35		13.85	15.35 15.40									
	RTP C	H 584.91														
					1 in 40	1	in 30	1 in 30	1 in	<u>30 </u>	n 30	40 1 in 5	0	1 in 40	1 in 50	
				BL											Ш	
		42.40	.43	42.67	42.71	42.77	42.55		42.00	42.55	42.62	42.80	42.86	42.95	42.98 42.98 RI	
		42.40	42.43 42.	42	42	42	42		42	42	42	42	42	42	42	
		42.46	42.47 42	42.51 42.51	42.52	42.55 42.55	42.57 42.57		42.60	42.63	42.65 42.66	42.67	42.70	42.73	42.74 42.74	
		-16.10 4	-14.60 4	-10.05	-8.55	-5.95	-3.05 4		00 	3.05 4.	5.75 4	7.35	10.35	13.85		
		<u> </u>	`		·			CH 554	4.03							
											1 in 30	1 in	50	1 in 30	1 in 50	
						n 40		— —_1 in 3 0 —	<u> </u>	n 30	111130					
UM41.0				<u> </u>												
IGN SURFACE		42.42-	42.45 -	42.64 - 42.64 -	42.68		42.81 - 42.70 -		42.80	42.70 -		42.93 -	42.99		43.11 1 43.14 43.14	
LAND SURFACE		42.42	42.45													
TING SURFACE		42.70	42.72	42.77 42.77	42.78		42.82 42.82		42.84	42.85 42.85		42.87	42.89	10 01	42.91 42.91 42.91	
SET		-16.10	-14.60	-10.10 -10.05	-8.55		-3.65 -3.05		00.0	3.05 3.65		7.35	10.35	1.0 BF	13.85 15.35 15.40	
								CH 52	5.78					1 in 30	1 in 50	
					1 in 4	.0		1 in 30	1 in 3	30	<u>1 in 30</u>	1 in 5				
M42.0				TBI TBI											RBL	
IN SURFACE		42.43-	42.46+	42.76+ 42.76	42.80-		42.92-42.81-	- CP C4		42.81-		43.05-	43.11-	43.22+	43.25 43.26-	
AND SURFACE		42.43	42.46													
ING SURFACE		42.84	42.85	42.88 42.88	42.89		42.90 42.91	42 91		42.93 42.93		42.95	42.96	42.97		
ET		-16.10	- 14.60	-10.10 -10.05	-8.55		-3.65			3.05		7.35	10.35	13.85	15.35 15.40	
								CH 502								

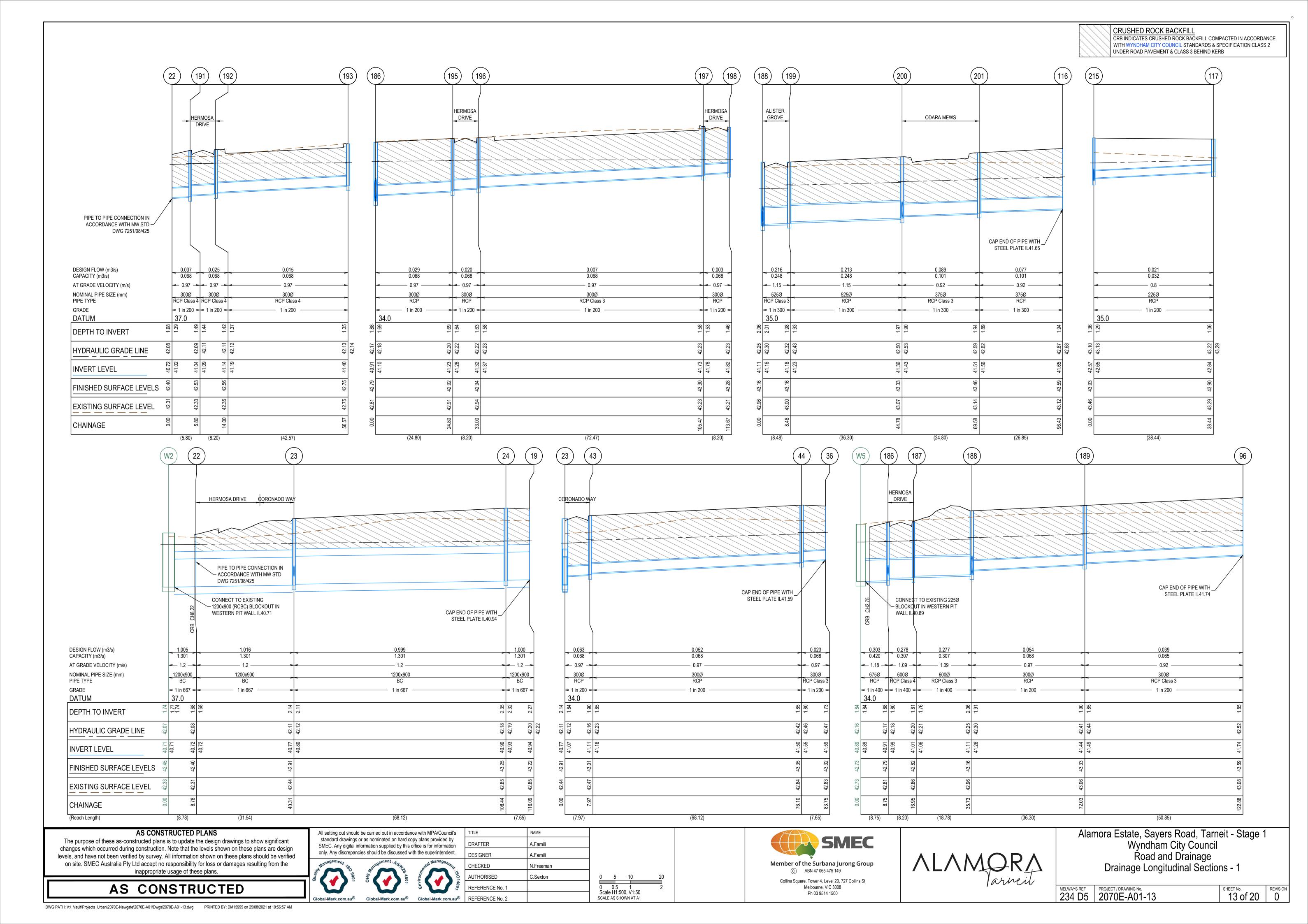
DATUM42.0
DESIGN SURFACE
WETLAND SURFA
EXISTING SURFAC

				0.05	.50	4.90		3.50	3.50	50	3.70		3.00	3.50	1.50 0.05
	INST		、	5.00 F/F	PATH							SHAI	RED PATH		F/PATH
	BAI	TER TO EXISTING $^{\sim}$	11	FBL	1	in 40	B2	1 in 30	1 in 30		1 in 40		1 in 50	1 in 40	1 in 50
					<u> </u>										
					COMMS 1.80 ° ELE 2.30 °									DW 3.10 0 NDW 2.60 0 GAS 2.10 0	
	DATUM41.0 DESIGN SURFAC	F		42.70	8		42.86	42.85		42.75		42.76	42.70	42.62	42.59
	EXISTING SURFA			42.18 4			42.24 4	42.27 4		42.29 4 42.29 4		42.32	42.35	42.38	42.40
	OFFSET			-10.10 4			-3.65 4 -3.05 4	0.00		3.65 4		7.35 4	10.35	13.85	
				<u>``</u>					CH 608	.55				`	
					1 in 30	1 in 5	50								
1 in 30	0 <u>1 in 30</u>	1 in 30	1 in 5		1 1 30										
							RBL								
	42.54 - 42.54 - 42.55 -		42.67 -	42.73-		42.85-	42.88 42.88								
	42.33 42.33 42.33		42.37	42.41		42.46	42.48 42.48								
	0.00 3.05 3.65		7.35	10.35		13.85	15.35 15.40								
	RTP CH 584.9	1												1 in 40 1 in	50
					1 in 40		<u>in 30 1 i</u>	n 30	1 in <u>3</u> 0	<u>1 in</u>	<u>30 1 in 4</u>	<u>1 in 5</u>	50	<u>1 in 40 1 in</u> 	
_															
				[B]											RBL
	42.40	42.43		42.67	42.71	42.77	42.55	42.66	42.55	42.55	42.62	42.80	42.86	42.95	42.98
	42.40	42.43		77		~ ~ ~	7 7	7	7	7	77	7	7	7	
	42.46	42.47		42.51 42.51	42.52	42.55 42.55	42.57 42.57	42.60	42.63	42.64	42.65	42.67	42.70	42.73	42.74
	-16.10	-14.60		-10.10 -10.05	-8.55	-5.95	-3.80	0.00		3.80	5.75	7.35	10.35	13.85	15.35
	<u> </u>							CH 554.03							
											1 in 30	1 in	50	<u>1 in 30 1 i</u>	n 50
			 		1 in4	40		in 3 0 <u> </u>	<u> </u>						
			\bigcirc	TBL											
Ξ [42.42	42.45 -		42.64 -	42.68		42.81-	42.80	42.70-	42.81		42.93 -	42.99	43.11-	43.14 - 43.14 -
CE	42.42	42.45													
CE	42.70	42.72		42.77 42.77	42.78		42.82	42.84	42.85	42.85		42.87	42.89	42.91	42.91 42.91
	-16.10	-14.60		-10.10 -10.05	-8.55		-3.05	0.00	3.05	3.65		7.35	10.35	13.85	15.35 15.40
								CH 525.78						1 ir	50
_					1 in 40			30	<u>_1_in_30</u>		<u>1 in 30</u>	1 in 9	50	<u>1 in 30 1 ir</u>	
				TBL	1										RBL
	42.43	42.46			42.80		42.92	42.92	42.81	42.92		43.05	43.11	43.22	43.25
E	42.43	42.46													
E	42.84	42.85		42.88 42.88	42.89		42.90	42.91	42.93	42.93		42.95	42.96	42.97	42.98 42.98
	-16.10	-14.60		-10.10 -10.05	-8.55		-3.65 -3.05	00.0	3.05	3.65		7.35	10.35	13.85	15.35 15.40
								CH 502.18							
andard d	but should be carried out in accordance wi drawings or as nominated on hard copy pl	ans provided by	TITLE DRAFTER		NAME A.Famili								SM	FC	
±∪. Any	/ digital information supplied by this office iscrepancies should be discussed with the		DESIGNER		A.Famili										ΛL

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-12.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:56:23 AM

Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

0 5 10 20 0 0.5 1 2 Scale H1:500, V1:50 SCALE AS SHOWN AT A1


$\left \right\rangle$	$\langle \rangle$	\sim
КX	X	$\times imes$
\sim	\searrow	\times
$\left \right\rangle$	$\langle \times$	(\times)
\sim	\nearrow	$\sim \sim$
\times	\times	$\times \times$

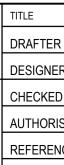
STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE EXISTING SURFACE

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Cross Sections: Hermosa Drive Ch 502.18 - Ch 606.55
 MELWAYS REF
 PROJECT / DRAWING No.

 234 D5
 2070E-A01-12
 SHEET NO. REVISION 12 OF 20 0

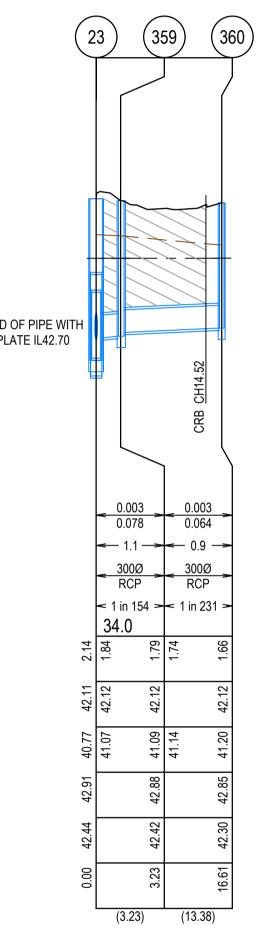
	(134) (131)		209 (213)	200	208 (21	0) (211 (134)		(212) (214)		(215) (1	137
	ODARA MEWS				ODARA MEWS							
												CAP END OF STEEL PLATE
DESIGN FLOW (m3/s) CAPACITY (m3/s)	< <u>0.043</u> <	<u>0.045</u> 0.064	80.038 0.038 0.064	<u> </u>		<u>0.113</u> 0.124	 > 0.114 > − 0.124 	<u>0.077</u> 0.124	0.050 0.050 <	<u>0.044</u> 0.097	> <u>0.014</u> 0.045	
AT GRADE VELOCITY (m/s) NOMINAL PIPE SIZE (mm)		0.9		450Ø		1.12	>< 1.12 ->< 375Ø			1.37 300Ø	→ - 1.13 → 300Ø	~
PIPE TYPE GRADE	RCP Class 4 < 1 in 200 → 35.0	RCP 1 in 200	ŘCP Class 4 → < 1 in 200 →			RCP Class 3	RCP Class 4	RCP 1 in 200	RCP Class 4 ><	RCP 1 in 100	RCP = = = = = = = = = = = = = = = = = = =	>
DATUM DEPTH TO INVERT	1.55 1.40 0.CC		1.24 1.19 1.19	0.25 1:97	1.75 1.70 1.67	1.62	1.61 1.56 1.55 1.50		1.34 1.26 1.46 1.41		1.36 1.31	1.28
HYDRAULIC GRADE LINE	42.83 42.86 42.88 42.88 42.89		42.99 43.00 43.02 43.07	42.50	42.55 42.56 42.60	42.71	42.78 42.79 42.83 42.86		42.95 43.01 43.01 43.01 43.01 43.03		43.10 43.13 43.14 43.14	43.14
INVERT LEVEL	41.80 41.87 41.92 41.97		42.18 42.23 42.28	41.36	41.45 41.50 41.55		41.69 41.74 41.80 41.85		42.09 42.16 42.18 42.23		42.57 42.62 42.70	42.70 J
FINISHED SURFACE LEVELS	22 22		43.42	43.33	43.20		43.31		43.42		43.93 43.93	43.98
EXISTING SURFACE LEVEL	43.25		43.40	43.07	43.12 43.14		43.22		43.40		43.46	43.48
	0.00		52.79 62.01	0.00	12.02 20.37		39.72 50.38		98.30 03.05 03.05		36.75	44.40
(Reach Length)	(9.77)	(43.02)	(9.22)	(12.02)	(8.35)	(19.35)	(10.66)	(47.92)	(4.75)	(33.70)	(7.65)	

AS CONSTRUCTED PLANS


The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

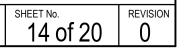
AS CONSTRUCTED

All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by SMEC. Any digital information supplied by this office is for information only. Any discrepancies should be discussed with the superintendent.



DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-14.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:57:56 AM

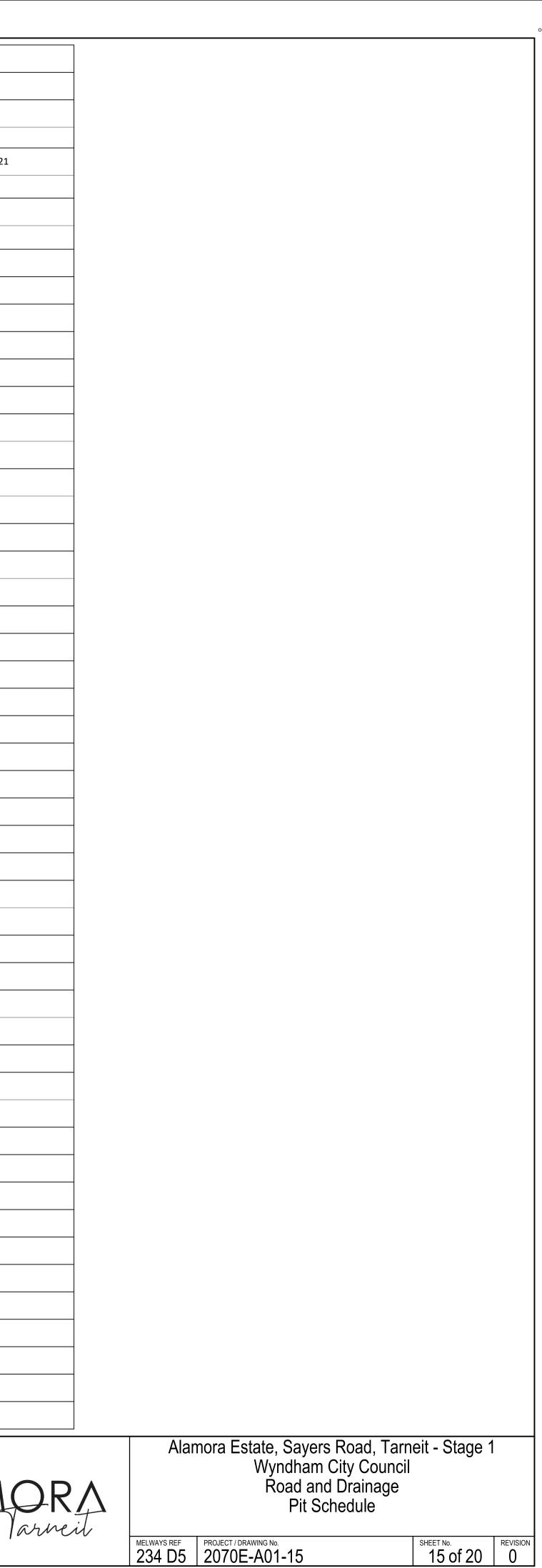
	NAME			
FTER	A.Famili		SMEC	
IGNER	A.Famili			
CKED	N.Freeman		Member of the Surbana Jurong Group (C) ABN 47 065 475 149	
HORISED	C.Sexton	0 5 10 20	C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St	-
ERENCE No. 1		0 0.5 1 2 Scala H1:500 V1:50	Melbourne, VIC 3008	
ERENCE No. 2		Scale H1:500, V1:50 SCALE AS SHOWN AT A1	Ph 03 9514 1500	

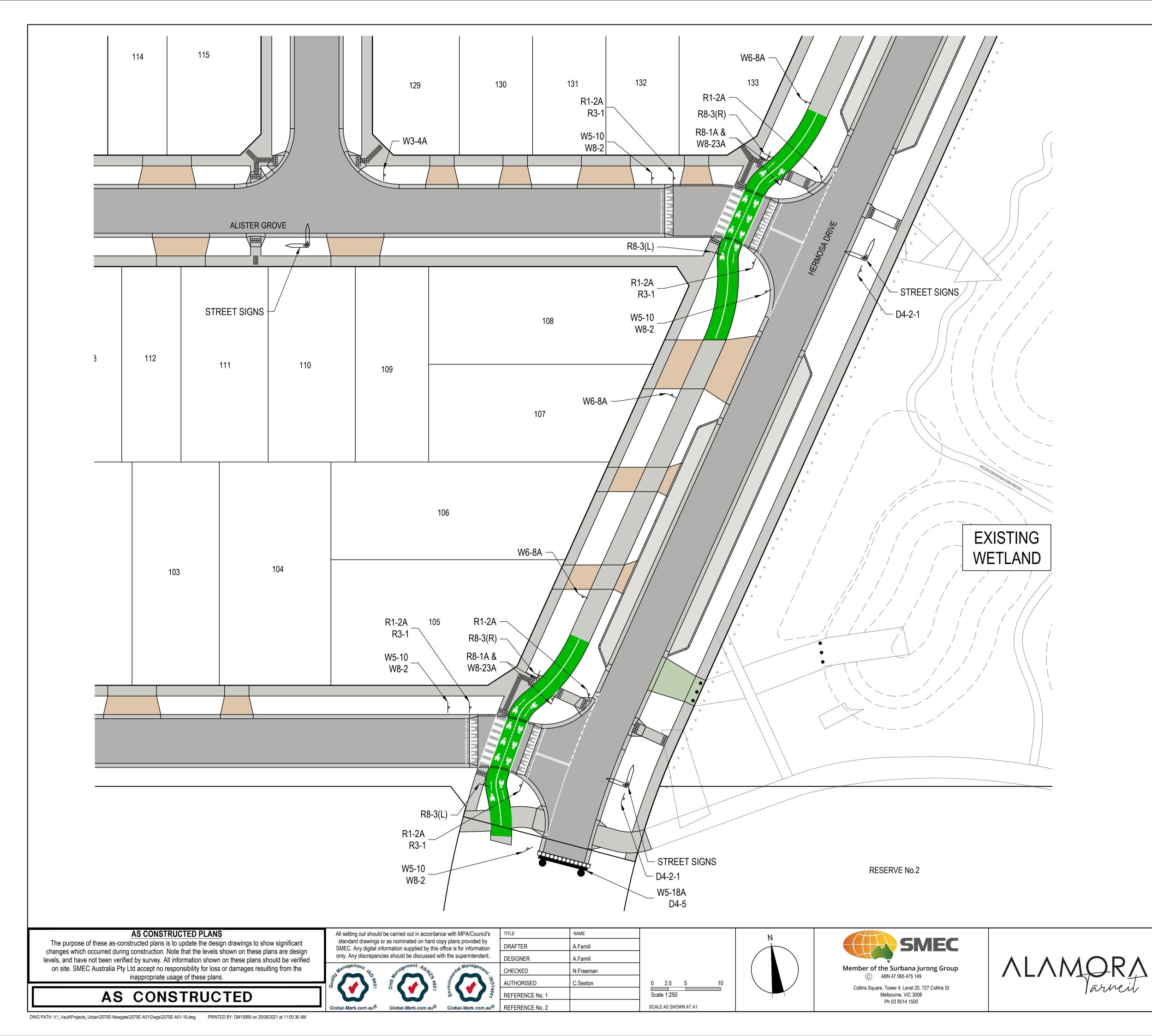

	CRUSHED ROCK BACKFILL CRB INDICATES CRUSHED ROCK BACKFILL COMPACTED IN ACCORDANCE
$\langle \rangle$	WITH WYNDHAM CITY COUNCIL STANDARDS & SPECIFICATION CLASS 2 UNDER ROAD PAVEMENT & CLASS 3 BEHIND KERB

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Drainage Longitudinal Sections - 2

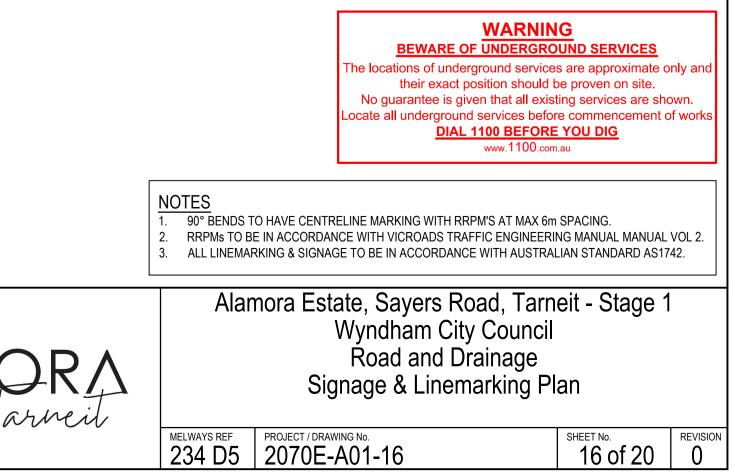
MELWAYS REF	PROJECT / DRAWING No.
234 D5	2070E-A01-14

Dec: Provide of the state o		PIT	INTERNAL		INLET		OUTLET		PIT					
0 0	NAME	ТҮРЕ	WD	LEN	DIA	INV LEV	DIA	INV LEV	SETOUT RL	DEPTH	STD DWG		REMARKS	
1 1	ExW2	BYPASS PIT WITH GRILLE			900	40.71	450	41.582	0	1.768				
1 1					1050	40.732								
D COUNTY DD D </td <td>22</td> <td>ENDPIPE</td> <td></td> <td></td> <td>900</td> <td>40.723</td> <td>900</td> <td>40.723</td> <td>42.403</td> <td>1.68</td> <td></td> <td>CONNECTION II</td> <td>N ACCORDANCE WITH MELBOURNE WA</td> <td>ATER STANDARD DRAWING 7251/08/321</td>	22	ENDPIPE			900	40.723	900	40.723	42.403	1.68		CONNECTION II	N ACCORDANCE WITH MELBOURNE WA	ATER STANDARD DRAWING 7251/08/321
Image: state in the s					300	41.016								
Image: Second	23	DOUBLE SIDE ENTRY PIT	1650	900	900	40.8	900	40.77	42.908	2.138	EDCM 602 & 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
A JAK, DATA Bats Li Li Bats Li Bats Li Bats Li Bats Ba					300	41.07								
Bit Bit Int Sol Adva					300	41.07								
4 30.44.242 tr tr 11 10 9.0 9.0 4.14 90 4.13 48.0 100 100 100 a 30.47 Mar 50 40 10.01 100 10.01 100 10.01 100 10.01 100 10.01 100 10.01 100 10.01 100	24	JUNCTION PIT	1650	900	900	40.933	900	40.903	43.249	2.346	EDCM 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
Image: constraint of the second sec	19	ENDPIPE			900	40.944	900	40.944	43.218	2.274				
n 100071 100 100 400 400 400 400 400 100 1 1000000000000000000000000000000000000	43	DOUBLE SIDE ENTRY PIT	600	900	300	41.16	300	41.11	43.006	1.895	EDCM 605			
ARCLOM Image: set of the set of	44	JUNCTION PIT	600	900	300	41.551	300	41.501	43.346	1.845				
Image: state in the state	36	ENDPIPE			300	41.589	300	41.589	43.315	1.726				
10 1000 <		JUNCTION PIT			675	40.892	1050	40.842	0	1.889				
Image: Normal biology of the set o					1050	40.892								
D1 OP OP <th< td=""><td>186</td><td>SIDE ENTRY PIT</td><td>600</td><td>900</td><td>600</td><td>40.989</td><td>675</td><td>40.914</td><td>42.792</td><td>1.878</td><td>EDCM 601</td><td></td><td></td><td></td></th<>	186	SIDE ENTRY PIT	600	900	600	40.989	675	40.914	42.792	1.878	EDCM 601			
Image: Property and the state of t					300	41.102								
Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Constr	187	SIDE ENTRY PIT	600	900	600	41.06	600	41.01	42.818	1.809	EDCM 601			
10 316 100 100 4.44 844 4.43 4.13 100 100 10 10.00 1	188	DOUBLE SIDE ENTRY PIT	900	900	300	41.256	600	41.106	43.162	2.056	EDCM 602 & 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
9 96 96 96 97					525	41.156								
94 00.06.2 BOL(NTPF) 95 90 90 90 9.00	189	SIDE ENTRY PIT	600	900	300	41.488	300	41.438	43.334	1.896	EDCM 601			
Pin Coulds SO CUTIVITY Could	96	ENDPIPE			300	41.742	300	41.742	43.589	1.846				
10 300 FBUTVOT 60 60 1 1 0.00 4.100	191	DOUBLE SIDE ENTRY PIT	600	900	300	41.095	300	41.045	42.533	1.488	EDCM 602			
105 307 K/MP/H1 400 300 41.75 300 41.75 14.8 400.40 36 300 K/MP/H1 400 300 41.73 300 41.73 12.8 12.68 100.400.00 37 300 K/MP/H1 400 47.73 300 41.73 12.8 12.68 100.400.00 37 300 K/MP/H1 400 47.73 300 41.73 12.8 12.68 100.600.00 37 300 K/MP/H1 400 41.28 41.81 41.81 13.8 41.81 13.8 12.69 100.600.00 300 K/MP/H1 400 41.42 52.8 41.81 41.81 41.81 13.87 12.81 10.600 40 41.44 52.8 41.83 41.83 41.83 1.84	192	DOUBLE SIDE ENTRY PIT	600	900	300	41.186	300	41.136	42.559	1.423	EDCM 602			
Ins Societhy Print Geo Societhy Print Geo Addition Geo Addition </td <td>193</td> <td>SIDE ENTRY PIT</td> <td>600</td> <td>900</td> <td></td> <td></td> <td>300</td> <td>41.399</td> <td>42.745</td> <td>1.346</td> <td>EDCM 601</td> <td></td> <td></td> <td></td>	193	SIDE ENTRY PIT	600	900			300	41.399	42.745	1.346	EDCM 601			
17 500 FMTKYT 55 400 400 400 4100 <th< td=""><td>195</td><td>SIDE ENTRY PIT</td><td>600</td><td>900</td><td>300</td><td>41.276</td><td>300</td><td>41.226</td><td>42.916</td><td>1.69</td><td>EDCM 601</td><td></td><td></td><td></td></th<>	195	SIDE ENTRY PIT	600	900	300	41.276	300	41.226	42.916	1.69	EDCM 601			
19 SOC CM INVERT 600 900 1 1 100 4.42 4.276 1.48 CCM 001 19 SOULLA SUBLINTER MI 900 900 575 4.125 333 41.18 4.413 1.376 EDCM 602 6.007 PTT DE HAUNCH TO X00000000000000000000000000000000000	196	SIDE ENTRY PIT	600	900	300	41.367	300	41.317	42.942	1.626	EDCM 601			
19 DOULD SUD ENTRY IPT 900 900 526 41.25 91.25 41.85 43.85 1976 DOM 02.6.67 PIT TO 01 (AUNCH TO 0000000 COVIR TOWAR 20 JUNCHON PT 500 907 375 41.41 975 41.356 43.367 1.971 600/ 607 PIT TO 01 (AUNCH TO 000000 COVIR TOWAR 20 SUG ENTRY IPT 600 600 375 41.36 775 41.368 41.368 1.945 (DOW 001 PIT TO 01 (AUNCH TO 000000 COVIR TOWAR 215 JUNCHON PT 600 600 375 41.36 775 41.368 1.945 (DOW 001 PIT TO 01 (AUNCH TO 000000 COVIR TOWAR 215 JUNCHON PT 600 500 42.81 775 41.369 1.945 (DOW 001 PIT TO 01 (AUNCH TO 000000 COVIR TOWAR 141 JUNCHON PT 600 500 42.81 1.75 41.97 1.901 PIT TO 01 (AUNCH TO 00000 COVIR TOWAR 141 JUNCHON PT 600 500 3.00 42.35 43.97 1.901 P	197	SIDE ENTRY PIT	600	900	300	41.779	300	41.729	43.305	1.576	EDCM 601			
2DD I.N.N.TION PIT 950 900 975 41.48 925 41.38 44.327 1.971 EDD/VE/F PIT TO BE HAUNDED TO SCORED CLIVES TO PARA 211 SUDF HNTPY PIT 650 900 975 41.585 375 41.581 44.583 1.045 FDD/VE01 116 BROMPE 773 47.486 320 42.571 0 1.357 1.045 PDD/VE01 116 BROMPE 773 47.486 320 42.571 0 1.357 PDD/VE01 117 J.N.CTION PIT 650 900 773 47.486 775 41.786 0 1.553 PDD/VE01 117 J.N.CTION PIT 650 900 900 42.255 500 41.571 375 41.476 0 1.553 PDD/VE01 PDD/VE01 <td>198</td> <td>SIDE ENTRY PIT</td> <td>600</td> <td>900</td> <td></td> <td></td> <td>300</td> <td>41.82</td> <td>43.278</td> <td>1.458</td> <td>EDCM 601</td> <td></td> <td></td> <td></td>	198	SIDE ENTRY PIT	600	900			300	41.82	43.278	1.458	EDCM 601			
Image: state	199	DOUBLE SIDE ENTRY PIT	900	900	525	41.235	525	41.185	43.161	1.976	EDCM 602 & 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
201 SDC ENTRY PT 600 900 757 41.51 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775 41.63 775	200	JUNCTION PIT	900	900	375	41.431	525	41.356	43.327	1.971	EDCM 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
16 6.40 PPP (10 375 41.63 375 41.63 43.99 1.64 1.64 1.64 115 JUNCTON PT 1.0 2.25 42.64 300 42.57 0 1.36 1.00 117 JUNCTON PT 600 500 1.00 2.25 42.58 43.97 1.650 1.00					450	41.406								
11 11 1 1 2 42.66 300 42.572 0 1.362 1 17 111 111 300 42.62 1 1 1.69 1.69	201	SIDE ENTRY PIT	600	900	375	41.563	375	41.513	43.458	1.945	EDCM 601			
Image: Normal state	116	ENDPIPE			375	41.653	375	41.653	43.593	1.94				
11 JUNCTION RT 600 900	215	JUNCTION PIT			225	42.646	300	42.571	0	1.362				
134 SIDE ENTRY PIT 1 300 41.81 375 41.96 0 1.555 Image: Constraint of the second of the sec					300	42.621								
Image: Note Note Note Note Note Note Note Note	117	JUNCTION PIT	600	900			225	42.838	43.897	1.059				
13.1 SIDE ENTRY PIT 660 900 300 41.97 300 41.92 43.375 1.455 EDCM 601 209 DOUBLE SIDE ENTRY PIT 660 900 300 42.285 300 42.285 12.35 EDCM 601 213 JUNCTION PIT 660 900 375 41.54 43.00 41.285 EDCM 601 208 SIDE ENTRY PIT 900 900 375 41.540 43.02 1.75 EDCM 601 210 SIDE ENTRY PIT 600 900 375 41.540 43.02 1.67 EDCM 601 211 SIDE ENTRY PIT 600 900 375 41.540 43.07 1.615 EDCM 601 212 DOUBLE SIDE ENTRY PIT 600 900 300 42.281 300 43.42 1.335 EDCM 602 PIT TO BE HAUNCH TO 600x900 COVER TOWA 214 JUNCTION PIT 600 900 300 42.697 300 42.683 1.792 EDCM 605 EDCM 605	134	SIDE ENTRY PIT			300	41.871	375	41.796	0	1.555				
209 DOUBLE SDE ENTRY PIT 600 900 300 42.285 300 42.185 43.42 1.235 EDCM 602 213 JUNCTION PIT 600 900 375 41.504 43.00 41.454 43.204 1.75 EDCM 601 PITTO BE HAUNCH TO 600:900 COVER TOWA 210 SIDE ENTRY PIT 600 900 375 41.596 375 41.692 43.204 1.75 EDCM 601 PITTO BE HAUNCH TO 600:900 COVER TOWA 211 SIDE ENTRY PIT 600 900 375 41.596 375 41.692 43.307 1.615 EDCM 601 211 SIDE ENTRY PIT 600 900 375 41.72 375 41.692 43.307 1.615 EDCM 601 212 DOUBLE SIDE ENTRY PIT 600 900 300 42.24 300 42.895 1.355 EDCM 601 313 ENDPIPE					375	41.846								
213 JUNCTION PIT 600 900 Image: constraint of the substrate of the s	131	SIDE ENTRY PIT	600	900	300	41.97	300	41.92	43.375	1.455	EDCM 601			
208 SIDE ENTRY PIT 900 900 375 41.504 450 41.454 43.204 1.75 EDCM 601 PIT TO BE HAUNCH TO 600x900 COVER TOWARD (210 SIDE ENTRY PIT 600 900 375 41.506 375 41.546 43.215 1.67 EDCM 601 PIT TO BE HAUNCH TO 600x900 COVER TOWARD (211 SIDE ENTRY PIT 600 900 375 41.546 43.215 1.65 EDCM 601 212 DOUBLE SIDE ENTRY PIT 600 900 300 42.16 375 41.692 43.307 1.615 EDCM 601 214 JUNCTION PIT 600 900 300 42.16 375 43.064 1.462 EDCM 605 375 JUNCTION PIT 600 900 300 42.697 43.976 1.278	209	DOUBLE SIDE ENTRY PIT	600	900	300	42.235	300	42.185	43.42	1.235	EDCM 602			
210 SIDE ENTRY PIT 600 900 375 41.596 375 41.546 43.215 1.67 EDCM 601 211 SIDE ENTRY PIT 600 900 375 41.742 375 41.692 43.307 1.615 EDCM 601 212 DOUBLE SIDE ENTRY PIT 600 900 300 42.16 375 42.085 43.42 1.335 EDCM 602 PIT TO BE HAUNCH TO 600:900 COVER TOWAR 214 JUNCTION PIT 600 900 300 42.234 300 42.697 43.976 1.278 EDCM 605 137 ENDPIPE 1 600 900 300 41.141 300 41.991 42.883 1.792 EDCM 605 359 JUNCTION PIT 600 900 300 41.141 300 41.991 42.893 1.656 EDCM 605 360 DOUBLE SIDE ENTRY PIT 600 900 300 41.191 42.891 1.656 EDCM 605 360 DOUBLE SIDE ENTRY PIT	213	JUNCTION PIT	600	900			300	42.281	43.466	1.185	EDCM 605			
211 SIDE ENTRY PIT 600 900 375 41.742 375 41.692 43.307 1.615 EDCM 601 212 DOUBLE SIDE ENTRY PIT 600 900 300 42.16 375 42.085 43.42 1.335 EDCM 602 PIT TO BE HAUNCH TO 600x900 COVER TOWAR 214 JUNCTION PIT 600 900 300 42.697 300 42.697 43.976 1.278 EDCM 605 137 ENDPIPE 0 300 42.697 300 42.697 43.976 1.278 EDCM 605 359 JUNCTION PIT 600 900 300 41.141 300 41.091 42.883 1.792 EDCM 605 360 DOUBLE SIDE ENTRY PIT 600 900 300 41.199 42.883 1.656 EDCM 605 Control of davings or as nonimated or han according on plans providently singlificant or as nonimated or han according on plans providently singlificant or as nonimated or han according on plans providently singlificant or as nonimated or han according on plans provident or as nonimated or han according on plans provident or as nonimated or han according o	208	SIDE ENTRY PIT	900	900	375	41.504	450	41.454	43.204	1.75	EDCM 601		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
212 DOUBLE SIDE ENTRY PIT 600 900 300 42.16 375 42.085 43.42 1.335 EDCM 602 & 607 PIT TO BE HAUNCH TO 600x900 COVER TOWARD 214 JUNCTION PIT 600 900 300 42.234 300 42.184 43.666 1.462 EDCM 605 137 ENDPIPE 300 42.697 300 42.697 1.278 359 JUNCTION PIT 600 900 300 41.141 300 41.091 42.883 1.792 EDCM 605 350 JUNCTION PIT 600 900 300 41.191 42.883 1.792 EDCM 605 350 JUNCTION PIT 600 900 100 41.191 42.883 1.792 EDCM 605 350 JUNCTION PIT 600 900 100 41.191 42.883 1.656 EDCM 605 350 JUNCTION PIT 600 900 100 NFeeman FEEME AFemii EDCM 605 EDCM 605 <td>210</td> <td>SIDE ENTRY PIT</td> <td>600</td> <td>900</td> <td>375</td> <td>41.596</td> <td>375</td> <td>41.546</td> <td>43.215</td> <td>1.67</td> <td>EDCM 601</td> <td></td> <td></td> <td></td>	210	SIDE ENTRY PIT	600	900	375	41.596	375	41.546	43.215	1.67	EDCM 601			
214 JUNCTION PIT 600 900 300 42.234 300 42.884 43.646 1.462 EDCM 605 137 ENDPIPE 1 300 42.697 300 42.697 43.976 1.278 359 JUNCTION PIT 600 900 300 41.141 300 41.091 42.883 1.792 EDCM 605 360 DOUBLE SIDE ENTRY PIT 600 900 300 41.199 42.883 1.792 EDCM 605 mgs to show significant in these plans are designificant in these plans should be carried out in accordance with MPA/Council's SMEC. Ary digital information supplet by this formation only. Any discrepancies should be discussed with the superintendent. Intel NAME DEVIEV SMEC Ary digital information supplet by this formation only. Any discrepancies should be discussed with the superintendent. NFreeman N	211	SIDE ENTRY PIT	600	900	375	41.742	375	41.692	43.307	1.615	EDCM 601			
137 ENDPIPE 300 42.697 300 42.697 43.976 1.278 359 JUNCTION PIT 600 900 300 41.141 300 41.091 42.883 1.792 EDCM 605 360 DOUBLE SIDE ENTRY PIT 600 900 0 300 41.199 42.854 1.656 EDCM 602 & 607 Impose books significant in these plans are design on byoky dylatil information suppled by this fore is for inform on suppled by this fore is for inform to fore is provided by suffice on the superintendent in the superi	212	DOUBLE SIDE ENTRY PIT	600	900	300	42.16	375	42.085	43.42	1.335	EDCM 602 & 607		PIT TO BE HAUNCH TO 600x900 COVE	R TOWARDS PAVEMENT
359 JUNCTION PIT 600 900 300 41.091 42.883 1.792 EDCM 605 360 DOUBLE SIDE ENTRY PIT 600 900 0 300 41.091 42.854 1.656 EDCM 605 Intellige out should be carried out in accordance with MPA/Council is for information supplied by this office is for information suppl			600	900							EDCM 605			
360 DOUBLE SIDE ENTRY PIT 600 900 Image: Constraint of the service of the servic														
All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by this office is for information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information supplied by this office is for information null information null information supplied by this office is for information null information null information supplied by this office is for information null info					300	41.141								
ngs to show significant in these plans are design e plans should be verified ages resulting from the D D D D D D D D D D	360	DOUBLE SIDE ENTRY PIT	600	900			300	41.199	42.854	1.656	EDCM 602 & 607			
In those plane drop grand drop grand only. Any discrepancies should be discussed with the superintendent. DESIGNER A.Famili Designer Impagement	ngs to show s	ignificant standard drav	wings or as nominal	ted on hard copy p	lans provided by									
ages resulting from the Images r	n these plans e plans should	are design SMEC. Any disc only. Any disc	repancies should be	ppiled by this office e discussed with th	e superintendent.									
D Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500 REFERENCE No. 2 REFERENCE No. 2	ages resulting	from the	to satagem	AS N.S	ental Management				_			Memb	er of the Surbana Jurong Group ⓒ ABN 47 065 475 149	$ \Lambda L \Lambda M \langle$
Global-Mark.com.au® Global-Mark.com.au® Global-Mark.com.au® REFERENCE No. 2 SCALE AS SHOWN AT A1	D		101 HO	LOBI	014007			J. SEXION				Collin	Melbourne, VIC 3008	10
			.au [®] Global-Ma	ark.com.au [®] G	lobal-Mark.com.au [®]	REFERENCE NO	p. 2		SCALE AS S	HOWN AT A1			Pn U3 9514 1500	


AS CONSTRUCTED PLANS


The purpose of these as-constructed plans is to update the design drawings to changes which occurred during construction. Note that the levels shown on thes levels, and have not been verified by survey. All information shown on these plan on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages re inappropriate usage of these plans.

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-15.dwg PRINTED BY: DM15995 on 25/08/2021 at 10:59:15 AM


AS CONSTRUCTED

LEGEND - SIGN AND LINEMAR ALL PROPOSED, FUTURE & EXISTING SERVICE LO	
R1-2A	GIVE WAY
R3-1	PEDESTRIAN PATH
W5-10	SPEED HUMP
W8-2 (20km/h)	SPEED LIMIT
ROAD AHEAD W6-8A	ROAD AHEAD
ONLY ONLY R8-3(L)	SHARED PATH
ONLY ONLY R8-3(R)	SHARED PATH
W3-4A	SPEED HUMP AHEAD
ROAD ENDS W5-18A	ROAD ENDS
D4-5	HAZARD MARKER
D4-3	DIRECTIONAL HAZARD MARKER
Image: W8-23A	BIKE PATH ONLY AND DIRECTIONAL ARROWS

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-17.dwg PRINTED BY: DM15995 on 25/08/2021 at 11:01:05 AM

300 VP

520mm

ASPHALT

BASE COL

SUBBASE

CAPPING

SUBGRAD LAYER

4200 V 550mm

ASPHALT

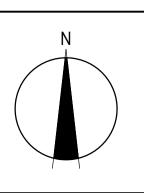
SUBBASE

CAPPING

SUBGRA

200 VPE

LAYER

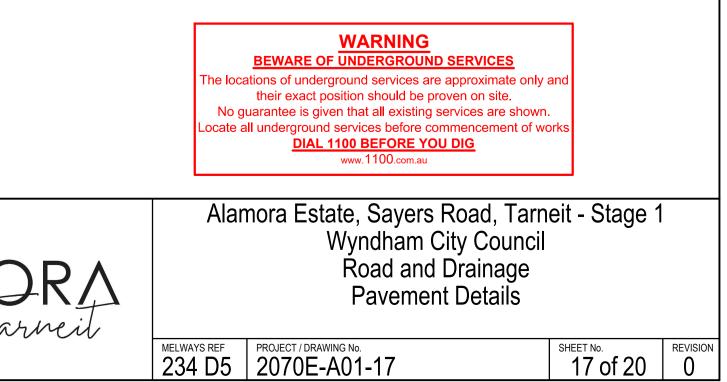

> NOTE ALL PAVEMENT DESIGNS HAVE BEEN PROVIDED BY TONKIN AND TAYLOR. SMEC IS NOT RESPONSIBLE FOR GEOTECHNICAL OR PAVEMENT RELATED DESIGNS AND IS NOT RESPONSIBLE FOR THE ACCURACY, ADEQUACY OR APPROPRIATENESS OF THESE DESIGNS. THE PAVEMENT COMPOSITIONS SHOWN ON THIS DRAWING HAVE BEEN REPRODUCED FROM THE PAVEMENT REPORT FOR THIS DEVELOPMENT STAGE. THIS DOCUMENT SHOULD BE REVIEWED BY THE CONTRACTOR TO ENSURE DESIGN HAS BEEN INTERPRETED CORRECTLY. A COPY OF THIS DOCUMENT WILL BE MADE AVAILABLE ON REQUEST. ANY DIFFERENCES FROM THIS REQUIREMENTS SHOWN ARE TO BE NOTIFIED TO THE SUPERINTENDENT BEFORE PROCEEDING.

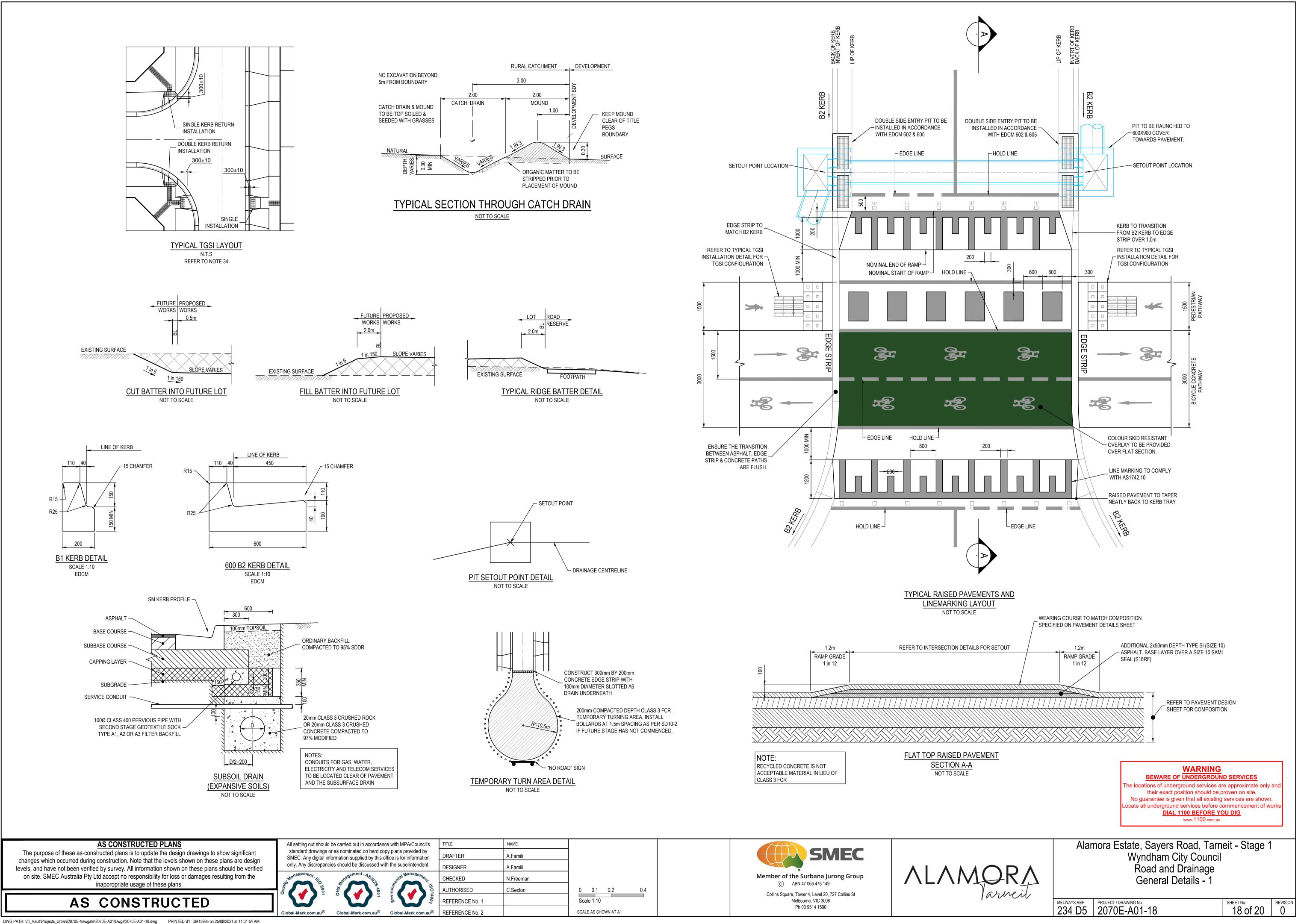
NAME A.Famili A.Famili N.Freeman C.Sexton

137

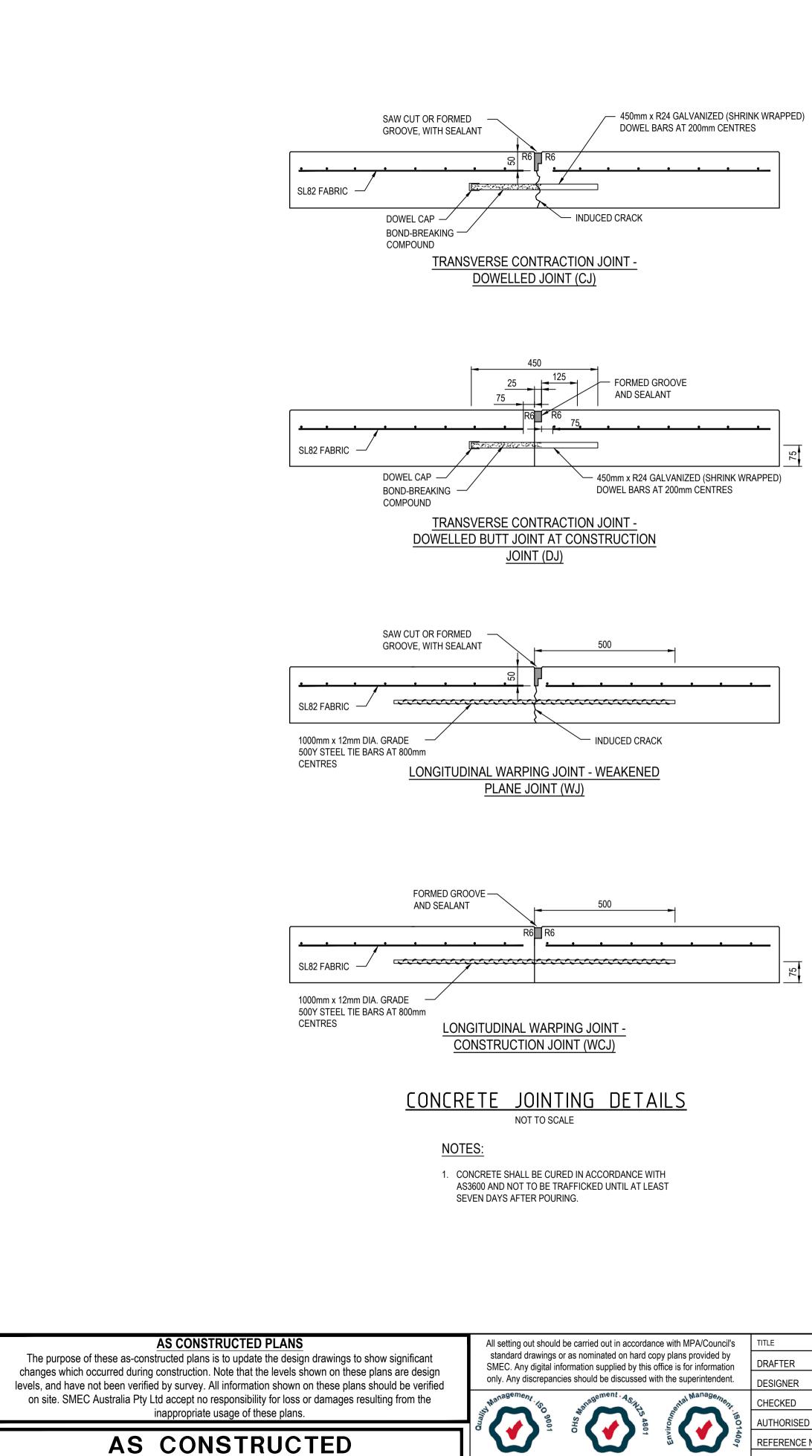
136

5 10 Scale 1:500 SCALE AS SHOWN AT A1

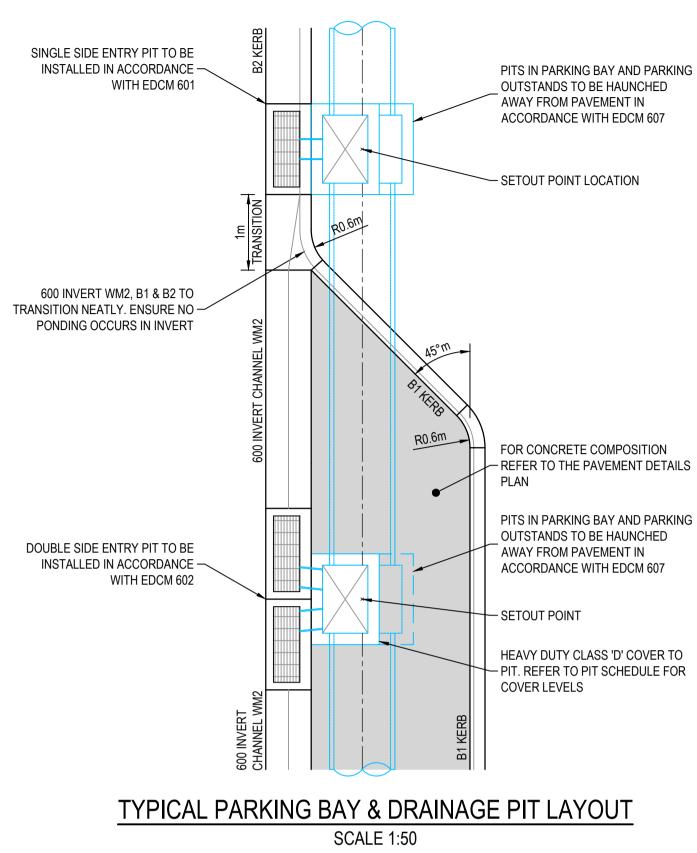

Member of the Surbana Jurong Group C ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

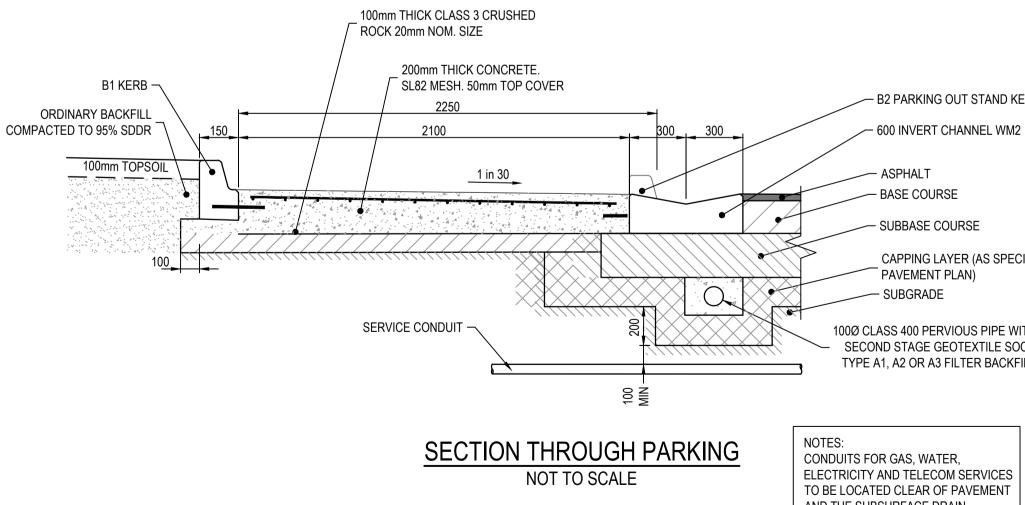

ALAMORA Varneit

n DEPTH PAVEMENT COMPOSITION		LAYER	
PAVEME	PAVEMENT LAYER		MATERIAL
	WEARING COURSE	20	SIZE 7 TYPE L CLASS 320 ASPHALT
	INTERMEDIATE COURSE	30	SIZE 10 TYPE N CLASS 320 ASPHALT
T	BASE COURSE	-	-
	SAMI SEAL	10	SIZE 10 SAMI SEAL S18RF
	BITUMINOUS PRIME	7	BITUMINOUS PRIME
OURSE	BASE	140	SIZE 20 CLASS 2 CRUSHED ROCK. COMPACTED TO A MINIMUM DENSITY RATIO OF 98% (MODIFIED) AS1289, 5.2.1
SE COURSE LOWER BASE COURSE		130	SIZE 20 CLASS 3 CRUSHED ROCK. COMPACTED TO A MINIMUM DENSITY RATIO OF 96% (MODIFIED) AS1289, 5.2.1
G	CAPPING LAYER	200	RIPPED ROCK OR STABILISED CLAY MEETING THE FOLLOWING PROPERTIES: CBR >=7%, PERMEABILITY k < 1x10 ⁹ m/s AND SWELL < 1.5% MATERIAL. COMPACTED TO A MINIMUM DENSITY RATIO 98% (STANDARD) AS1289, 5.1.1
ADE/CONSTRUCTION	SUBGRADE/CONSTRUCTION LAYER	200	RIPPED ROCK OR STABILISED CLAY MEETING THE FOLLOWING PROPERTIES: CBR >=7%, PERMEABILITY k < 1x10 ⁻⁹ m/s AND SWELL < 1.5% MATERIAL. COMPACTED TO A MINIMUM DENSITY RATIO 98% (STANDARD) AS1289, 5.1.1


VPD - HERMOSA DRIVE NORTH PAVEMENT COMPOSITION								
m DEPTH PAVEMENT COMPOSITION		LAYER						
PAVEMEN	PAVEMENT LAYER		MATERIAL					
	WEARING COURSE	40	SIZE 14 TYPE N CLASS 320 ASPHALT					
	INTERMEDIATE COURSE	75	SIZE 20 TYPE SI ASPHALT CLASS 320 ASPHALT					
LT	BASE COURSE	75	SIZE 20 TYPE SI ASPHALT CLASS 320 ASPHALT					
	SAMI SEAL	-	-					
	BITUMINOUS PRIME	-	-					
SE COURSE	UPPER	100	SIZE 20 CLASS 3 CEMENT TREATED CRUSHED ROCK (CTCR) 3% CEMENT. COMPACTED TO A MINIMUM DENSITY RATIO OF 98% (MODIFIED) AS1289, 5.2.1					
	LOWER	110	SIZE 20 CLASS 3 CRUSHED ROCK. COMPACTED TO A MINIMUM DENSITY OF 96% (MODIFIED) AS1289, 5.2.1					
IG	CAPPING LAYER	150	RIPPED ROCK OR STABILISED CLAY MEETING THE FOLLOWING PROPERTIES: CBR >=7%, PERMEABILITY k < 1x10 ⁻⁹ m/s AND SWELL < 1.5% MATERIAL. COMPACTED TO A MINIMUM DENSITY RATIO 98% (STANDARD) AS1289, 5.1.1					
ADE/CONSTRUCTION SUBGRADE/CONSTRUCTION LAYER		200	RIPPED ROCK OR STABILISED CLAY MEETING THE FOLLOWING PROPERTIES: CBR >=7%, PERMEABILITY k < 1x10 ⁻⁹ m/s AND SWELL < 1.5% MATERIAL. COMPACTED TO A MINIMUM DENSITY RATIO 98% (STANDARD) AS1289, 5.1.1					

200 VPD - PARKING BAY PAVEMENT COMPOSITION								
300mm DEPTH PA	VEMENT COMPOSITION	LAYER						
PAVE	MENT LAYER	THICKNESS (mm)	MATERIAL					
CONCRETE	UPPER LAYER	200	CONCRETE. SL82 MESH. 40mm TOP COVER					
CRUSHED ROCK BASE		100	CLASS 3 CRUSHED ROCK 20mm NOM. SIZE					





	A.Famili	
	A.Famili	
	N.Freeman	
	C.Sexton	0 0.1 0.2 0.
. 1		Scale 1:10
. 2		SCALE AS SHOWN AT A1

Global-Mark.com.au®

e carried out in accordance with MPA/Council's as nominated on hard copy plans provided by rmation supplied by this office is for information as should be discussed with the superintendent.	TITLE DRAFTER DESIGNER	NAME A.Famili A.Famili		SMEC		
sanagement durit and management	CHECKED	N.Freeman		Member of the Surbana Jurong Group (C) ABN 47 065 475 149	/ \ L/ \/V]	
PISH States	AUTHORISED	C.Sexton	0 0.1 0.2 0.4	Collins Square, Tower 4, Level 20, 727 Collins St		
	REFERENCE No. 1		Scale 1:10	Melbourne, VIC 3008		
Global-Mark.com.au [®] Global-Mark.com.au [®]	REFERENCE No. 2		SCALE AS SHOWN AT A1	Ph 03 9514 1500		

J	1	2
N	'	-

- B2 PARKING OUT STAND KERB

- ASPHALT

CAPPING LAYER (AS SPECIFIED ON PAVEMENT PLAN) - SUBGRADE

100Ø CLASS 400 PERVIOUS PIPE WITH SECOND STAGE GEOTEXTILE SOCK TYPE A1, A2 OR A3 FILTER BACKFILL

ELECTRICITY AND TELECOM SERVICES TO BE LOCATED CLEAR OF PAVEMENT AND THE SUBSURFACE DRAIN

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage General Details - 2

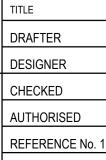
MELWAYS REF PROJECT / DRAWING No. 234 D5 2070E-A01-19

SHEET No. REVISION 19 of 20 0 SHEET No.

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-19.dwg PRINTED BY: DM15995 on 25/08/2021 at 12:20:54 PM

Project Name:	Design Package: 2070E-A01											
Alamora Stage 1	Date: 14/02/2020											
<u>PHASE</u>	DISCIPLINE CODE		nstruction- Operations- Maintenance OTENTIAL RISK	RISK OWNER	POTENTIAL CONSEQUENCES	POTENTIAL ELIMINATION MEASURE, DESIGN INITIATIVE or CONTROL (Identify any Standard or Code of practice used)	HOW ISSUE ADDRESED IN DESIGN AND/OR CONSTRUCTION OF THE WORKS	IS THE RISK ELIMINATED YES/NO	Risk Likelihoo	Residual Risk Conseque nce (0-5)	_	RESIDUAL RIS OWNER
		Road Furniture / Roadside features										
Construction	RD Roads	Construction close to live traffic	New works will be constructed adjacent to live traffic when abutting existing stages.	Contractor	Disruptions to live traffic, construction incident involving live traffic.	Provide safe temporary traffic control (TCP)	TCP provided within contract	Ν	5.000	3.000	15.000	Constructor
Construction	US Utilities or Services	Utilities become a hazard within clear zones	Vehicle conflict with utility / pit	Contractor	Personal injury, vehicle damage	Sequence works and protect with temp barrier or traffic control (TCP)	TCP provided within contract	N	1.000	5.000	5.000	Constructor
Operational	RD Roads	Sight Lines	Inadequate drivers response time.	Road Authority	Increased potential for accidents	Ensure design complies with relevant standard. Undertake thorough Safety Audit	Vis lines checked and discussed with approval authority as part of design approval process	Ν	1.000	4.000	4 000	Road Authority
Dperational	LS Lines and Signs	Signs and street lights	Potential for drivers / riders to strike signs and street lights	Road Authority	Increased potential for accidents	Ensure design complies with relevant standard. Undertake thorough Safety Audit	Refer to appropriate standard for sign and lighting offsets	N	1.000	4.000		Road Authority
Dperational	RD Roads	Culverts	Potential fall hazard during maintenance, by vechicles and pedestrians	Relevant Authority	Falling from a height	Barriers to be provided in accordance with road standards	Barriers to be provided and safe batter slopes (>1:3)	N	2.000	5.000	10.000	Constructor
		Drainage										
Dperational	DR Drainage	Drainage Grated Pits	Trip/fall hazard with large spaced grate	Relevant Authority	Increased potential for accidents	Provide pedestrian/bicycle friendly grates where applicable. Refer to pit schedule	Design in accordance with authority and manufacturers standards	N	3.000	2.000	6.000	Authority
Dperational	DR Drainage	Non Standard Large Pits	Potential for pit failure	Relevant Authority	Increased risk to maintenance crews/ vehicles	Structural design in accordance with relevant design principles.	Refer to structural drawings and calculations	N	1 000	4 000	4.000	Authority
				,		Fencing to be provided where culverts/headwalls are at height in accordance		N	1.000	4.000		
Operational	DR Drainage	Culvert Endwalls/Headwalls	Potential for falling from height	Relevant Authority	Increased potential for accidents	with relevant authority standards	Allow for fencing in Design Process	N	1.000	4.000	4.000	Authority
Dperational	DR Drainage	Culvert Endwall/Headwall Outlets	Children playing in large pipes / watercourses and access for maintenance	Relevant Authority	Increased potential for accidents	Grate provided to authority standards	Design in accordance with authority and manufacturers standards	Ν	2.000	5.000	10.000	Authority
<i>l</i> aintenance	DR Drainage	Access to Pits	Lack of safe access for maintenance	Relevant Authority	Increased risk to maintenance crews	Provide safe working conditions for maintenance. Provide safe landing/ access arrangements as per relevant authority standards	Where possible design pit in location for easy access and outside of permanent water bodies	N	2.000	5.000	10.000	Authority
<i>N</i> aintenance	DR Drainage	Deep Pits	Lack of safe entry for maintenance	Relevant Authority	Increased potential for accidents	Contractor to be certified for work in confined spaces, step irons to be provided to appropriate authority standards. Refer to pit schedule	Design in accordance with authority standards	N	1.000	5.000	5.000	Authority
Naintenance	DR Drainage	Access to drains / culverts	Lack of safe access for maintenance	Relevant Authority	Increased risk to maintenance crews	Provide safe working conditions for maintenance. Access as approved by authority	Design pit in location for easy access as agreed with authority	N	2.000	3.000	6.000	
		Sewer										
<i>N</i> aintenance	SE Sewer	Deep Manholes	Lack of safe entry for maintenance	Relevant Authority	Increased potential for accidents	Contractor to be certified for work in confined spaces, landings and step access provided as per authority standards and schedule	Design in accordance with authority standards. Refer pit schedule on drawings	N	1.000	5.000	5.000	Authority
Naintenance	SE Sewer	Access to Manholes	Lack of safe access for maintenance	Relevant Authority	Increased risk to maintenance crews	Provide safe working conditions for maintenance. Manholes located in compliance with authority standards	Where possible design manhole in location for easy access	Ν	1.000	5.000	5.000	Authority
		Electricity										
						Electrical designed by sub consultant with appropriate accreditation and in	Pits designed below ground. Where above ground adequate offset from vehicle clear zones has been provided or barrier protection					A. 11 - 11
Dperational	ES Electrical Services	Electrical Design	Location of assets within clear zones e.g., pits/ substations	Relevant Authority	Increased potential for accidents	accordance with authority standards	provided	N	2.000	3.000	6.000	Authority
		Telstra										
Descriptional		Telstra Design	Leastion of constantithin close zance a guite	Delevent Authority	lacrossed activities for accidente	Telecommunications designed by authority consultant with appropriate accreditation and in accordance with authority standards	Pits designed below ground. Where above ground adequate offset from vehicle clear zones has been provided or barrier protection provided					Authority
Dperational	TE Telstra		Location of assets within clear zones e.g pits	Relevant Authority	Increased potential for accidents			N	2.000	3.000	6.000	Authonity
		Water					Pits designed below ground. Where above ground adequate offset					
Operational	WA Water	Water Design	Location of assets within clear zones e.g pits/ substations	Relevant Authority	Increased potential for accidents	Water pits designed in accordance with authority standards	from vehicle clear zones has been provided or barrier protection provided	N	2.000	3.000	6.000	Authority
		Gas										
							Pits designed below ground. Where above ground adequate offset					
Operational	GA Gas	Gas Design	Location of assets within clear zones e.g pits/ substations	Relevant Authority	Increased potential for accidents	Water pits designed in accordance with authority standards	from vehicle clear zones has been provided or barrier protection provided	Ν	1.000	1.000	1.000	Authority

AS CONSTRUCTED PLANS


The purpose of these as-constructed plans is to update the design drawings to show significant changes which occurred during construction. Note that the levels shown on these plans are design levels, and have not been verified by survey. All information shown on these plans should be verified on site. SMEC Australia Pty Ltd accept no responsibility for loss or damages resulting from the inappropriate usage of these plans.

AS CONSTRUCTED

All setting out should be carried out in accordance with MPA/Council's standard drawings or as nominated on hard copy plans provided by SMEC. Any digital information supplied by this office is for information only. Any discrepancies should be discussed with the superintendent.

DWG PATH: V:_Vault\Projects_Urban\2070E-Newgate\2070E-A01\Dwgs\2070E-A01-85.dwg PRINTED BY: DM15995 on 25/08/2021 at 12:21:25 PM

NAME A.Famili A.Famili N.Freeman C.Sexton

SCALE AS SHOWN AT A1

Member of the Surbana Jurong Group ⓒ ABN 47 065 475 149 Collins Square, Tower 4, Level 20, 727 Collins St Melbourne, VIC 3008 Ph 03 9514 1500

ALAMORA Varneit

Alamora Estate, Sayers Road, Tarneit - Stage 1 Wyndham City Council Road and Drainage Safety In Design

MELWAYS REFPROJECT / DRAWING No.234 D52070E-A01-85

 $\begin{array}{c|c} \text{SHEET No.} & \text{Revision} \\ \hline 20 \ of \ 20 & 0 \end{array}$