NOTES:

- 1. ALL WORKS TO BE CARRIED OUT IN ACCORDANCE WITH THE DRAWINGS, CURRENT COUNCIL STANDARD DRAWINGS AND SPECIFICATIONS AND VPA EDCM GUIDELINES TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT & A.S.2124-1992 GENERAL CONDITIONS OF CONTRACT
- PRIOR TO COMMENCEMENT OF WORKS ON SITE, THE CONTRACTOR MUST ENSURE THAT ALL MATTERS RELATING TO THE OCCUPATIONAL HEALTH AND SAFETY ACT 1985, INCLUDING ALL RELEVANT REGULATIONS, HAVE BEEN ADDRESSED IN PARTICULAR THE REQUIRED NOTIFICATIONS MUST BE CONVEYED TO THE VICTORIAN WORK COVER AUTHORITY - HEALTH AND SAFETY DIVISION WITH RESPECT TO TRENCHING OPERATIONS. DETAILS OF THE
- CONTRACTORS OCCUPATIONAL HEALTH AND SAFETY PROCEDURES MUST BE LODGED WITH THE SUPERINTENDENT PRIOR TO COMMENCEMENT OF WORKS. THE CONTRACTOR IS TO NOTIFY COUNCIL AND ALL SERVICE AUTHORITIES SEVEN (7) DAY
- PRIOR TO COMMENCING CONSTRUCTION THE CONTRACTOR SHALL CO-OPERATE WITH OTHER CONTRACTORS AND/OR AUTHORITIES AND SHALL ENSURE THAT ALL SERVICES ARE INSTALLED PRIOR TO THE FINAL PAVEMENT COURSE. THE CONTRACTOR SHALL CHECK WITH THE ENGINEER THE EXACT LOCATION OF ALL PROPOSED SERVICES PRIOR TO THE INSTALLATION OF CONDUITS. ALL WORKS ARE TO
- BE CARRIED OUT TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UNDERGROUND SERVICES PRIOR TO COMMENCING EXCAVATIONS AND THE VARIOUS D BE NOTIFIED. SHOULD ANY EXISTING SERVICES BE DAMAGED DURING CONSTRUCTION WORKS. THE CONTRACTOR SHALL MAKE ARRANGEMENTS FOR REPAIRS
- ALL COSTS FOR THIS SHALL BE BORNE BY THE CONTRACTOR DMMENCING WORK ON TRENCHES IN EXCESS OF 1.50m DEEP. NOTICE OF SUC PROPOSAL IS TO BE SENT TO THE SECRETARY OF MINERALS AND ENERGY IN ACCORDANC WITH CLAUSE 202 OF THE MINES (TRENCHES) REGULATIONS 1982. A FOREMAN QUALIFIED AS
- A MINES MANAGER MUST BE IN ATTENDANCE AT ALL TIMES DURING SUCH EXCAVATIO WORKS THE CONTRACTO ALL ERECT AND MAINTAIN ALL NECESSARY SHORING. PLANKING AND
- STRUTTING, DEWATERING DEVICES, BARRICADES, SIGNS, LIGHTS, ETC, NECESSARY TO KEE THE WORKS IN A SAFE AND STABLE CONDITION TO PROTECT THE PUBLIC FROM THE WORKS TION OF CONSTRUCTION. THE WHOLE SITE SHALL BE CLEANED UP & GRADED
- RUBBISH IS TO BE REMOVED. THE SITE IS TO BE LEFT CLEAN & TIDY AND TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT
- UPON COMPLETION OF THE CIVIL WORKS. THE CONTRACTOR SHALL PROVIDE "AS CONSTRUCTED" PLANS IN A D-SPEC AND R-SPEC DIGITAL FORMAT TO COUNCIL'S REQUIREMENTS AND TO THE SATISFACTION OF ALL PARTIES.
- THE INFRASTRUCTURE MANAGER OR HIS REPRESENTATIVE SHALL BE GIVE ACCESS TO THE SITE AT ALL TIMES. ALL CONSTRUCTION WORKS SHALL BE COMPLETED TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT.
- 11. BLASTING REQUIRES BLASTING PERMIT FROM COUNCIL 12. ANY EXISTING PAVEMENT OR DRAINAGE DAMAGED DURING CONSTRUCTION OR THE MAINTENANCE PERIOD IS TO BE REINSTATED BY THE CONTRACTOR TO THE SATISFACTION OF THE SUPERINTENDENT.

SURVEY & SETOUT:

- ALL LEVELS ARE TO AUSTRALIAN HEIGHT DATUM (AHD). 2. PERMANENT SURVEY MARK SKETCH PLANS ARE TO BE PREPARED ESTABLISHING A.H.D. LEVELS AND A.M.G. CO-ORDINATES FOR REGISTRATION WITH THE C.P.O. BY A LICENSED SURVEYOR.
- 3. ALL TBM'S AND CONTROL POINTS ARE TO BE MAINTAINED AND PROTECTED AT ALL TIMES DURING CONSTRUCTION. SHOULD ANY MARKS BE DISTURBED, THE CONTRACTOR WILL IMMEDIATELY NOTIFY THE CONSULTANT TO ARRANGE REINSTATEMENT AT THE CONTRACTORS EXPENSE.

EARTHWORKS:

- EARTHWORKS ARE TO BE PERFORMED IN ACCORDANCE WITH A.S.3798-2007 (GUIDELINES ON EARTHWORKS FOR COMMERCIAL AND RESIDENTIAL DEVELOPMENTS). FILLING TO BE CARRIED OUT USING APPROVED CLAY FILL COMPACTED TO 95% AASHO. DAMS AND OPEN CHANNELS TO BE EXCAVATED TO A FIRM BASE TO THE SATISFACTION OF A SUITABLY QUALIFIED GEOTECHNICAL ENGINEER PRIOR TO COMMENCEMENT OF FILLING. ALL FILLING MUST COMPLY WITH A.S. 3798-2007 LEVEL 1 AND BE COMPACTED IN 150mm LAYERS. CONTRACTOR TO TAKE LEVELS IN EXISTING DAMS AND CHANNELS PRIOR TO FILLING & LEVELS RECORDED TO BE SUPPLIED TO THE ENGINEER FOR AS CONSTRUCTED PLAN.
- FILLING TO BE CARRIED OUT USING APPROVED MATERIAL. TOPSOIL AND ALL VEGETABLE MATERIAL TO BE STRIPPED FROM FILL SITE PRIOR TO ANY PLACEMENT OF MATERIAL. ALL FILLING TO BE CARRIED OUT IN 150mm LAYERS AND COMPACTED TO 95% OF MAXIMUM DRY DENSITY.
- 6. FILL AREAS TO BE STRIPPED OF TOPSOIL, THEN REPLACED TO OBTAIN FINAL LEVELS AS SHOWN ON THE DRAWINGS. ALL FILLING TO BE COMPACTED AS SPECIFIED.
- NO TOP SOIL TO BE REMOVED FROM THE SITE WITHOUT THE APPROVAL OF COUNCIL THE NATURE STRIPS IN CUT OR FILLED AREAS ARE TO BE TOPSOILED WITH 100mm OF APPROVED TOPSOIL MATERIAL. IF THE SOIL ON THE SITE, IS NOT SUITABLE, IT SHALL BE IMPORTED AT THE CONTRACTORS EXPENSE. THE APPROVED TOPSOIL MATERIAL IS TO BE TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT.
- 9. ALL ALLOTMENTS TO BE GRADED AT A MINIMUM OF 1 IN 150 TO THE LOW CORNER. 10. UNLESS OTHERWISE SHOWN BATTERS INTO ALLOTMENTS SHALL NOT BE STEEPER THAN 1 in 6. ALL BATTERS ARE TO BE GRASSED AND MULCHED WITH A MIXTURE OF CHOPPED GRASS, HAY, STRAW AND BITUMINOUS EMULSION, ALL TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT
- 11. FOR THE TERM OF THE CONTRACT PERIOD THE CONTRACTOR SHALL TAKE ADEQUATE PRECAUTION TO PREVENT THE EMISSION OF DUST, WHETHER FROM THE OPERATION OF CONSTRUCTION EQUIPMENT OR EXPOSURE OF SOIL TO WINDS.
- 12. APPROPRIATE SILTATION CONTROL IS TO BE CARRIED OUT DURING CONSTRUCTION AND MAINTENANCE PERIOD. 13. ON COMMENCEMENT OF CONSTRUCTION WORKS THE CONTRACTOR MUST COMPLY WITH
- THE RECOMMENDATIONS OF THE EPA PUBLICATION "CONSTRUCTION TECHNIQUES FOR SEDIMENT POLLUTION CONTROL" (PUBLICATION NO. 275).
- 14. COMPACTION RESULTS OF EASEMENTS TO BE PROVIDED TO COUNCILS CONSTRUCTION ENGINEER.

ALL DIMENSIONS AND RADII ARE GIVEN TO LIP OF KERBS, CHAINAGES ARE WITH RESPECT TO CENTRE LINE OF ROAD RESERVE, UNLESS OTHERWISE SHOWN.

- ALL PAVEMENT MATERIALS ARE TO BE VICROADS APPROVED MATERIALS. PAVEMENT SUB-BASE AND BEDDING TO KERB & CHANNEL IS TO EXTEND 600mm BEHIND
- BACK OF KERB
- ALL SERVICES ARE TO BE CONSTRUCTED PRIOR TO PLACEMENT OF CAPPING LAYER UNDER ROADS
- ALL DRIVEWAYS ARE TO BE 3.5m WIDE AND OFFSET 0.75m FROM THE SIDE BOUNDARY OR EASEMENT, UNLESS OTHERWISE SHOWN - REFER EDCM 501 & 502. DRIVEWAY LAYBACK AND WINGS TO BE CONSTRUCTED AS A SINGLE SEGMENT OF CONCRETE.
- ACCESS RAMPS (DRIVEWAYS INTO LOTS) SHOULD HAVE A MAXIMUM GRADE OF 1 IN 10. CONCRETE SHALL BE 25 MPa FOR BOTH KERB AND CHANNEL AND FOOTPATH, HAVING A
- MINIMUM CEMENT CONTENT OF 280Kg PER CUBIC METRE
- FOOTPATHS AND VEHICLE CROSSINGS TO BE DOWELLED AT THE END OF EACH DAY'S POUR OF CONCRETE.
- SIGNS, LINEMARKING AND DELINEATORS ARE TO BE INSTALLED AS APPLICABLE ON ROADS IN ACCORDANCE WITH A.S.1742.2.
- STREET SIGNS ARE TO BE PROVIDED TO THE WYNDHAM CITY COUNCIL STANDARD, INCLUDING THE PROVISION OF LOGOS.
- INSTALL BLUE RAISED REFLECTIVE PAVEMENT MARKER ON ALL ROAD CENTRELINE AND "GROUND BALL" MARKER POST TO INDICATE THE LOCATION OF ALL FIREPLUGS.
- DRAINAGE PIPES SHALL BE RUBBER RING JOINTS REINFORCED CONCRETE CLASS 2, UNLESS
- OTHERWISE SHOWN. ALL PVC STORM WATER DRAINAGE PIPES TO BE SEWER QUALITY PVC
- NO PVC STORM WATER DRAINAGE PIPES TO BE LAID UNDER ROADS.
- DRAINAGE PIPES AND PITS ARE SETOUT FROM OFFSETS, RATHER THAN FROM CENTRELINE PIPE CHAINAGES. CURVILINEAR DRAINAGE PIPES MUST BE INSTALLED IN ACCORDANCE WITH MANUFACTURES GUIDELINES.
- DRAINAGE PIPES SHALL NOT BE SUBJECTED TO CONSTRUCTION TRAFFIC LOADING DURING CONSTRUCTION UNLESS THE PIPE STRENGTH CHARACTERISTICS HAVE BEEN APPROVED BY THE CONTRACTORS ENGINEER. COMPUTATIONS ARE TO ACCORD WITH AS.3725-2007, LOADS ON BURIED PIPES
- PROPERTY INLET PITS ARE TO BE LOCATED 1.00m FROM LOW SIDE BOUNDARY, UNLESS OTHERWISE SHOWN. INVERTS OF PROPERTY INLETS ARE TO BE A MINIMUM OF 400mm BELOW FINISHED SURFACE
- HOUSE DRAINS ARE TO BE CONNECTED DIRECTLY INTO UNDERGROUND DRAINAGE PIPES OR PITS AND OFFSET FROM SIDE BOUNDARY 5.50m WHERE POSSIBLE AS PER EDCM 701. THE LOCATION OF THE HOUSE DRAIN TO BE MARKED AS PER EDCM 303. HOUSE DRAIN LEVEL TO BE A MINIMUM 0.4m BELOW THE LOWEST CORNER OF THE LOT
- ALL DRAINAGE PIPES UNDER ROAD PAVEMENT, DRIVEWAY, FOOTPATH & KERB AND
- CHANNEL SHALL BE BACKFILLED WITH CLASS 3 F.C.R. PRIOR TO THE ISSUE OF STATEMENT OF COMPLIANCE, ALL DRAINS ARE TO BE CCTV TESTE
- AND THE RESULTS PROVIDED TO COUNCIL. 10. SUBSURFACE DRAINS ARE TO BE LAID BEHIND ALL KERB AND CHANNEL AS PER EDCM 202
- WHEN ROADS ARE TRUNCATED AGAINST RISING LAND PENDING DEVELOPMENT OF FUTURE 11 STAGES, TEMPORARY A.G. DRAINS SHALL BE INSTALLED ACROSS THE END OF THE ROAD TO PREVENT SEEPAGE INTO PAVEMENT.

- 12. SERVICE CONDUITS ARE TO BE INSTALLED AT THE LOCATIONS SHOWN ON THIS DRAWING. LOCATION OF ALL UNDERGROUND SERVICE CONDUITS TO BE MARKED ON KERB & CHANNEL AS PER EDCM 303, SERVICE CONDUITS THAT ARE SUBJECT TO AMENDMENT SHALL NOT BE LAID UNTIL WRITTEN APPROVAL IS GIVEN BY THE SUPERINTENDENT.
- 13. ALL CONDUIT TRENCHES UNDER ROAD PAVEMENT, DRIVEWAY, FOOTPATH & KERB AND
- CHANNEL SHALL BE BACKFILLED WITH CLASS 2 F.C.R. 14. NBN TO BE NOTIFIED AT LEAST SEVEN (7) DAYS PRIOR TO CONCRETE WORKS BEING PLACED.
- 15. NBN PITS ARE TO BE CLEAR OF PATHS WITH THE EXCEPTION OF NEMI PARADE (WEST SIDE). 16. LOCATION OF ELECTRICITY AND VUF CONDUITS WILL BE PROVIDED ON SEPARATE
- DRAWINGS. 17. CONCRETE IS TO BE PLACED AROUND ELECTRICAL DISTRIBUTION PITS TO A MINIMUM DEPTH OF 125mm. DISTRIBUTION PITS WITHIN FOOTPATHS ARE TO A MINIMUM OF 300mm WITHIN THE EDGE OF PATH.

VEGETATION

- ALL EXISTING TREES ARE TO BE PROTECTED DURING CONSTRUCTION. 2. ANY TREE REMOVAL MUST BE IN ACCORDANCE WITH THE APPROVED LANDSCAPE PLAN OR
- AS DIRECTED ONSITE BY THE LANDSCAPE APPROVALS OFFICER. TREES SHOWN ON THE PLANS ARE TO BE RETAINED AND PROTECTED FROM DAMAGE DURING CONSTRUCTION.
- 3. ALL ROOTS AND DECOMPOSABLE MATERIAL UNDER ROAD PAVEMENTS SHALL BE REMOVED TO THE SATISFACTION OF COUNCIL'S SUPERINTENDENT.
- 4. NO SURPLUS TREES OR VEGETATION ARE TO BE BURNT ON SITE.

STRUCTURAL

- A BUILDING PERMIT MUST BE OBTAINED FOR ANY STRUCTURE/RETAINING WALL EXCEEDING 1.0m IN HEIGHT PRIOR TO THE COMMENCEMENT OF CONSTRUCTION, IN ACCORDANCE WITH THE BUILDING CODE OF AUSTRALIA. COPY OF BUILDING PERMITS AND 'CERTIFICATE F COMPLIANCE-CONSTRUCTION' TO BE SUBMITTED TO COUNCIL PRIOR TO 'STATEMENT OF COMPLIANCE'.
- 2. ALL STRUCTURAL WORK MUST BE SUPERVISED BY A QUALIFIED STRUCTURAL ENGINEER.

ALAMORA STAGE 18 WYNDHAM CITY COUNCIL

LOCALITY PLAN MELWAYS REF: 234 D7

Drawing Index

Drawing No.	Drawing Title	Revision
R100	COVER SHEET	А
R200	LAYOUT PLAN - 1	А
R201	LAYOUT PLAN - 2	А
R202	SERVICES PLAN - 1	А
R203	SERVICES PLAN - 2	А
R204	EARTHWORKS PLAN	А
R205	TYPICAL CROSS SECTIONS	А
R300	INTERSECTION DETAILS - 1	А
R301	INTERSECTION DETAILS - 2	А
R302	INTERSECTION DETAILS - 3	А
R400	ROAD LONGITUDINAL SECTIONS	А
R500	ROAD CROSS SECTIONS - 1	A
R501	ROAD CROSS SECTIONS - 2	A
R502	ROAD CROSS SECTIONS - 3	A
R503	ROAD CROSS SECTIONS - 4	A
R600	DRAINAGE LONG SECTIONS - 1	A
R601	DRAINAGE LONG SECTIONS - 2	A
R602	DRAINAGE LONG SECTIONS - 3	A
R603	PIT SCHEDULE	A
R700	PAVEMENT DETAILS	A
R701	TYPICAL DETAILS - 1	А
R702	TYPICAL DETAILS - 2	А
R800	SIGNAGE & LINEMARKING PLAN	A

NOTE: THE SITE OF WORKS IS SUBJECT TO THE PROVISIONS OF CULTURAL HERITAGE MANAGEMENT PLAN No.15676. ALL WORKS AND PERSONNEL MUST OBSERVE THE REQUIREMENTS OF THE MANAGEMENT PLAN AT ALL TIMES

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES THE LOCATIONS OF UNDERGROUND & OVERHEAD SERVICES ARE APPROXIMATE ONLY & THEIR EXACT POSITION SHOULD BE PROVEN ON SITE NO GUARANTEE IS GIVEN THAT ALL EXISTING SERVICES ARE SHOWN. LOCATE ALL UNDERGROUND SERVICES BEFORE COMMENCEMENT OF WORKS DIAL 1100 BEFORE YOU DIG

www.1100.com.au

TENDER NOT FOR CONSTRUCTION

DRAWN

DESIGNED

M.PLANT

M.PLANT

M.TROUNCE AWING No.

PROJECT ENGINEER

PROJECT MANAGER

M.TROUNCE

20	40	60	80	100

PROJECT No. 200282.18

REVISION **R100**

Α

	NT	CU						
		ריין ס	APPROVED	CHECKED	DRAWN	ISSUE DESCRIPTION	DATE	REVISION
		-						
and	N/I							
		_						
properties		-						
properties		- !						
ies Designed for Li	Communit	-						
ice Decigrica for Br	Contantianta	-	M.T	A.W	M.P	ISSUED FOR TENDER	18/10/24	A

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT	
						VIIIawood	
						properties	
						Communities Designed for Living	Suite 1 Newtov
А	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T		

LEGEND - LAY	OUT PLAN
	STORMWATER DRAIN, PIT & PROPERTY INLET
	EXISTING STORMWATER DRAIN
●S - ■	SEWER & MAINTENANCE STRUCTURES
● Ex S■	EXISTING SEWER
H	HOUSE DRAIN
	TACTILE PAVERS
ES141.34	EXISTING SURFACE LEVEL
FS140.35	FINISHED BUILDING LINE LEVEL
FR157.40	FINISHED RIDGE LINE LEVEL
TW159.30	TOP OF RETAINING WALL
BW159.30	BOTTOM OF RETAINING WALL
	STRUCTURAL FILL > 200mm DEEP
	EX. STRUCTURAL FILL > 200mm DEEP
\square	DIRECTION OF FALL
	OVERLAND FLOW
\ast	ALLOTMENT TO BE GRADED EVENLY IN
\sim	DIRECTION OF FALL TO LEVELS INDICATED
•	LIMIT OF WORKS
	CONCRETE EDGE STRIP WITH SUBSOIL DRAIN, "NO ROAD" SIGN & BARRIER
\bigotimes	EXISTING TREE TO BE REMOVED
	PERMANENT SURVEY MARK
 ↓	TEMPORARY BENCH MARK
	PROPOSED PAVEMENT. KERB & CHANNEL.
	FOOTPATH & DRIVEWAY
	PROPOSED RAVENENT VERD & OUANNEL FOOTRATH
	(WITH THICKENING) & HEAVY DUTY VEHICLE CROSSING
	(COLOURED EMERALD GREEN)
	RAISED PAVEMENT
	0.25m EXISTING CONTOUR
	STORMWATER PIT SETOUT POINT
W/2	

NOTE: STREET TREE LOCATIONS SHOWN ARE INDICATIVE ONLY. ULTIMATE LOCATION IS TO BE PROVIDED/CONFIRMED BY LANDSCAPE ARCHITECTS WARNING <u>BEWARE OF UNDERGROUND & OVE</u> The locations of underground & over approximate only & their exact position sho No guarantee is given that all existing serviall underground services before comment DIAL 1100 BEFORE

DRAWING TITLE

ALAMORA - STAGE 18 LAYOUT PLAN - 2

SCALE @ A1 : 1:500 0 5

STATUS

1, 2 Bloomsbury Street own, VIC, Australia 3220

WARNING
RGROUND & OVERHEAD SERVICES
Inderground & overhead services are eir exact position should be proven on site. hat all existing services are shown. Locate rvices before commencement of works
00 BEFORE YOU DIG
www.1100.com.au

	designed M.PLANT	PROJECT ENGINEER	
N	DRAWN M.PLANT	PROJECT MANAGER	
	PROJECT No. 200282.18	DRAWING NO.	REVISION

ROAD NAME		GAS	RE0 W	CYCLED /ATER	POTAE	BLE WATER	OPTIC FIBRE		ELE
	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE
BETHANY ROAD(LOT 1801 & 1802)	Ν	2.10	N	2.70	N	3.30	S	2.35	S
BETHANY ROAD(LOT 1803)	S	7.10	S	7.70	S	8.30	S	1.80	S
BETHANY ROAD(LOT 1804 to 1811)	S	3.55	S	4.15	S	4.75	S	1.80	S
BETHANY ROAD / HERMOSA DRIVE (CH225.223 - CH339.395)	S/W	7.10	S/W	7.70	S/W	8.30	S/W	1.80	S/W
HERMOSA DRIVE (CH348.545 - CH375.000)	S/W	3.55	S/W	4.15	S/W	4.75	S/W	1.80	S/W
HERMOSA DRIVE (CH385.226 - CH414.177)	S/W	7.10	S/W	7.70	S/W	8.30	S/W	1.80	S/W
HERMOSA DRIVE (CH417.572 - CH422.807)	W	3.65	W	4.15	W	4.75	W	1.80	W
ANDRIA DRIVE	W	2.10	W	2.60	W	3.10	E	1.80	E

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT	
						VIIAWCOO	
						properties	
						Communities Designed for Living	Suite 1, Newtow
А	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T		

ROAD NAME		GAS	REC W	YCLED ATER	POTAB	LE WATER	OPT	IC FIBRE	ELEC	CTRICITY	PUBLIC	LIGHTING	EXISTING STORMWATER DRAIN, PIT & PROPERTY INLE
	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	SIDE	OFFSET	
BETHANY ROAD(LOT 1801 & 1802)	N	2.10	Ν	2.70	N	3.30	S	2.35	S	3.10	N	1.00*	
ETHANY ROAD(LOT 1803)	S	7.10	S	7.70	S	8.30	S	1.80	S	2.60	N	1.00*	
ETHANY ROAD(LOT 1804 to 1811)	S	3.55	S	4.15	S	4.75	S	1.80	S	2.60	N	1.00*	PROPOSED ELECTRICITY (UNDERGROUND)
ETHANY ROAD / HERMOSA DRIVE CH225.223 - CH339.395)	S/W	7.10	S/W	7.70	S/W	8.30	S/W	1.80	S/W	2.60	N/E	1.00*	PROPOSED OPTIC FIBRE PROPOSED TEL STRA
IERMOSA DRIVE (CH348.545 - CH375.000)	S/W	3.55	S/W	4.15	S/W	4.75	S/W	1.80	S/W	2.60	N/E	1.00*	
IERMOSA DRIVE (CH385.226 - CH414.177)	S/W	7.10	S/W	7.70	S/W	8.30	S/W	1.80	S/W	2.60	N/E	1.00*	
IERMOSA DRIVE (CH417.572 - CH422.807)	W	3.65	W	4.15	W	4.75	W	1.80	W	2.60	E	1.00*	
ANDRIA DRIVE	W	2.10	W	2.60	W	3.10	E	1.80	E	2.40	E	1.00*	
* DENOTES OFFSET FROM BACK OF KE	RB.												
													EXISTING RECYCLED WATER
													PROPOSED PAVEMENT, KERB & CHANNEL,
													FOOTPATH & DRIVEWAY
													0.25m EXISTING CONTOUR
								WA	RNING]	STORMWATER PIT SETOUT POINT
Д	NOTE: S RE INDI	STREET TR	EE LOCA	ATIONS SH MATE LOO	IOWN CATION	BEW T	VARE OF The location	UNDERGRO	UND & OV ound & ove	/ERHEAD SI erhead servic should be prov	ERVICES es are ven on site		

IS TO BE PROVIDED/CONFIRMED BY LANDSCAPE ARCHITECTS $\Delta >$

PROJECT

DRAWING TITLE

ALAMORA - STAGE 18 **SERVICES PLAN - 2**

STATUS

SCALE @ A1 :

1, 2 Bloomsbury Street wn, VIC, Australia 3220

S		DESIGNED	PROJECT ENGINEER	
		M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION		DRAWN	PROJECT MANAGER	
@ A1 : 1:500	N	M.PLANT	M.TROUNCE	
		PROJECT No.	DRAWING No.	REVISION
		200282.18	R203	Α

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT
						VIIIQWØDQ
						properties
						Communities Designed for Living
Α	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T	Containantaina 2 congrica for Living

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVE
Α	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T

Suite 1, 2 Bloomsbury Street Newtown, VIC, Australia 3220

Communities Designed for Living

BEWARE OF UNDERGROUND & OVERHEAD SERVICES

The locations of underground & overhead services are

approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works

WARNING

DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

M.PLANT

PROJECT No.

M.PLANT

200282.18

DESIGNED

DRAWN

M.TROUNCE

PROJECT MANAGER

M.TROUNCE

R205

REVISION

Α

RAWING No.

PROJECT ENGINEER

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT
						properties
						Communities Designed for Living
A	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T	Newtown, Vic, Australia 3220

ALIGNM	IENT A				
PT NO A1 A2 A3	EASTING 292374.18 292365.44 292364.74	NOF 89 5807 12 5807 19 5807	RTHING 7989.634 7981.434 7973.903	RL 42.184 42.040 41.970	
CURVE A1 - A2 A2 - A3	NO I 88.383 5.210	RAD 8.600 83.200	ARC 13.266 7.565	A 2.434 0.086	B 1. 0.

PROJECT

LIP LINE B

ALIGNM	ALIGNMENT B						
PT NO	EASTING	NOR	THING	RL			
B1	292358.40	07 5807	974.760	41.970			
B2	292359.01	11 5807	980.980	42.001			
B3	292350.58	30 5807	990.061	42.070			
CURVE	NO I	RAD	ARC	A	B		
B1 - B2	4.663	76.800	6.251	0.064	0.048		
B2 - B3	92.182	8.600	13.836	2.636	1.949		

DRAWING TITLE

ALAMORA - STAGE 18 **INTERSECTION DETAILS - 1** STATUS

SCALE @ A1 :

Х	Y	I	MID POINT RL
1.563	1.562	1.563	41.985
3.367	2.829	3.459	42.035

		DESIGNED	PROJECT ENGINEER	
	N	M.PLANT	M.TROUNCE	
		DRAWN	PROJECT MANAGER	
	N	M.PLANT	M.TROUNCE	
AS SHOWN		PROJECT No.	DRAWING No.	REVISION
		200282.18	R300	Α

STATUS

SCALE @ A1 :

ALIGNMENT C

T NO C1 C2 C3 C4 C5 C6 C7	EASTING 292227.23 292222.30 292213.82 292201.80 292201.40 292201.41 292201.41	NOR 30 5808 09 5808 25 5808 05 5807 51 5807 04 5807 73 5807	THING 003.885 006.339 005.975 995.222 994.285 991.785 991.140	RL 42.681 42.642 42.410 42.154 42.149 42.137 42.133			
URVE N	NO I	RAD	ARC	A	B	X	Y
2 - C2	2.403	131.150	5.499	0.029	0.022	1.375	1.375
2 - C3	60.328	8.450	8.897	1.144	0.853	2.199	2.047
3 - C4	18.399	50.440	16.198	0.649	0.486	4.045	4.019
4 - C5	36.506	1.600	1.019	0.081	0.060	0.254	0.247
5 - C6	2.839	50.450	2.500	0.015	0.012	0.625	0.625
6 - C7	40.111	1.000	0.700	0.061	0.045	0.174	0.169

ALIGNMENT D

NO	EASTING	NOR	fhing	RL						
	292193.40	0 58079	97.901	42.134						
)	292194.04	2 58079	998.254	42.138						
3	292196.07	2 58079	998.525	42.148						
k.	292197.10	0 58079	999.104	42.154						
5	292202.02	5 58080	05.407	42.194						
6	292203.05	0 58080)13.832	42.239						
7	292194.473	3 58080)25.952	42.313						
3	292193.374	4 58080)26.973	42.321						
					_					
RVE	NO I	RAD	ARC	A	В	Х	Y	I	MID POINT	RL
- D2	42.963	1.000	0.750	0.069	0.052	0.186	0.180	0.187	42.136	
2 - D3	0.475	246.950	2.049	0.002	0.002	0.512	0.512	0.512	42.143	
3 - D4	43.251	1.600	1.208	0.113	0.084	0.300	0.289	0.302	42.151	
- D5	1.848	248.077	7.999	0.032	0.024	2.000	2.000	2.000	42.174	
5 - D6	60.289	8.450	8.891	1.143	0.852	2.197	2.046	2.223	42.216	
6 - D7	24.178	35.450	14.959	0.786	0.589	3.733	3.691	3.740	42.276	

approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

PROJECT ENGINEER

PROJECT MANAGER

RAWING No.

M.TROUNCE

M.TROUNCE

R301

TENDER NOT FOR CONSTRUCTION

AS SHOWN

DRAWN

M.PLANT

DESIGNED

M.PLANT

PROJECT No. 200282.18

REVISION Α

NM	ENT E		
О	EASTING	NORTHING	RL
	292161.072	5808057.072	42.515
	292149.063	5808056.796	42.581
	292145.277	5808052.928	42.609
	292145.167	5808052.815	42.609

CURVE NO I	RAD	ARC	A	B	X	Y	।	MID POINT F
E1 - E2 88.5	594 8.600	13.298	2.445	1.810	3.242	2.764	3.324	42.548

ALIGNM	ENT F			
PT NO F1 F2 F3	EASTING 292140.593 292144.084 292143.800	NOR 5808 5808 5808	THING 057.292 060.858 073.166	F 4 4
CURVE F2 - F3	NO I 91.406	RAD 8.600	ARC 13.720	2

	(H1)(H
RTICAL GEOMETRY ATUM RL42	-0.5%
ESIGN LEVEL	43.122
XISTING SURFACE	42.812
HAINAGE	000.0

ALIGNM	ENT H	
PT NO	EASTING	NOR
H1	292089.796	5808
H2	292090.846	5808
H3	292102.354	5808
H4	292108.937	5808
CURVE 1	NO I	RAD
H2 - H3	32.989	23.200
H3 - H4	87.597	8.600

DRAWING TITLE

ALAMORA - STAGE 18 **INTERSECTION DETAILS - 3**

REVISION	DATE		DRAWN	CHECKED		CLIENT	
	DAIL		DIAMIN	CHECKED	ATTROVED		
							C (
						VIIIUVUJU	
						properties	
						Communities Designed for Living	Suite 1, 2 Bloomsbury Street
A	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T	Continues Designed for Living	Newtown, VIC, Australia 3220

64.274 65.000 66.132 68.619 72.000 72.000 80.000 83.882 86.132 86.132

╘

0.69 % VERTICAL GEOMETRY HORIZONTAL GEOMETRY DATUM RL39 949 980 016 DESIGN CENTRELINE 4 4 4 5 4 EXISTING 798 **RIGHT LIP OF KERB** <u>+</u> -STAGE 798 LEFT LIP OF KERB 904 914 9142 9142 1467 151 151 167 167 167 167 191 191 191 221 221 235 235 EXISTING SURFACE 4 4 4 4 4 1 4 4 4 4 4 4 1 4

CHAINAGE

CH 82.128 RL 42.288 32 327 .500 .955 76.1 42.: CH 57.5 ELV. 41. CH 7 ELV. L= 15m VC L= 20m VC 2 % R= -143.9m HC 091-105-174-174-265-285-285-286-286-277-41.842 41.876 41.909 41.998 42.021 42.066 42.161 42.161 42.183 42.176 42.176

EXISTING STAGE

(THE GROVE)

PROPOSED

WORKS

00

20

000 500

55 57 60

ANDRIA DRIVE INTERSECTION

REFER SHEET R300

-0.5 %

CH 107.399 ELV. 42.171

42.171-42.172-

42.069 42.070

5

42.311 42.311

107.399 107.495

42.

BETHANY ROAD / HERMOSA DRIVE LONGITUDINAL SECTION

PROJECT

VERTICAL GEOMETRY

DATUM RL39

CHAINAGE

DRAWING TITLE

ALAMORA - STAGE 18 **ROAD LONGITUDINAL SECTIONS**

SCALE @ A1 : H 10 V 1

STATUS

LEGEND — — — EXISTING SURFACE DESIGN LINE FUTURE DESIGN LINE EXISTING DESIGN LINE LEFT LIP OF KERB RIGHT LIP OF KERB NOTE: REFER TO GENERAL NOTES REGARDING STRUCTURAL FILL

	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION	DRAWN	PROJECT MANAGER	
1:500 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
	PROJECT No.	DRAWING No.	REVISION
0.5 0 1 2	200282.18	R400	Α

18/10/24 ISSUED FOR TENDER

M.P A.W M.T

LEGEND

– — — EXISTING SURFACE DESIGN LINE

SELECT STRUCTURAL FILL

	1 in 50	1 in 401 in 50	1 in	401 in 30		
	FBL					
DATUM41.0						
DESIGN SURFACE	42.772 42.771 42.741	42.653	42.593	42.553 42.403 42.403	42.345 42.295 42.335	
EXISTING SURFACE	42.428 42.428 42.432	42.444	42.454	42.460 42.461 42.461	42.467 42.468 42.469	
OFFSET	-15.400 -15.350 -13.850	-10.350	-7.350	-5.750 -5.590 -5.550	-3.800 -3.500 -3.050	

CH 160.442

1 in 50 1 in 40 1 in 50 1 in 40 42.133 42.083 42.123 42.560 42.559 342 192 192 420 529 442 42. 5 4 42.328 42.328 42.328 42.335 42.335 42.335 42.309 42.309 42.312 42.322 5 -3.800 -3.500 -3.050 -15.400 -15.350 -5.750 -5.590 -5.550 897 13.85

CH 118.142

LTPCH 107.495

DRAWING TITLE

ALAMORA - STAGE 18 **ROAD CROSS SECTIONS - 1 BETHANY ROAD**

STATUS

NOTE:

CROSS SECTIONS LBL & RBL LABELS REFER TO LEFT AND RIGHT TITLE BOUNDARY RESPECTIVELY, READ IN ASCENDING ORDER ALONG THE RELEVANT LONG SECTION CHAINAGES

NOTE: SELECT STRUCTURAL FILL IN ACCORDANCE WITH WYNDHAM CITY COUNCIL SPECIFICATIONS & REQUIREMENTS IS REQUIRED UNDER PAVEMENT AND

FOOTPATHS @ 45° WHERE CONSTRUCTED ABOVE EXISTING SURFACE.

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG

www.**1100**.com.au

CH 146.342

	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION	DRAWN	PROJECT MANAGER	
: 1:100 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
1 0 2 4			REVISION
0.5 0 1 2	200282.18	R500	A

M.P A.W M.T

18/10/24 ISSUED FOR TENDER

PROJECT

BETHANY ROAD / HERMOSA DRIVE

1 ii	76 1 in 50			1 in 40	- <u>1 in 36</u>
	-				
42.869	42.702 42.701	42.671 42.666	42.606		42.431 42.281 42.321
42.417	42.420 42.421	42.425 42.426	42.436		42.463 42.466 42.466
-16.400	-15.400 -15.350	-13.850 -13.672	-10.672		
_	-16.400 42.417 42.869	-16.400 42.417 42.869 -15.400 42.420 42.702 LBL -15.350 42.420 42.701 -15.350	-16.400 42.417 42.869 -15.400 42.417 42.869 -15.350 42.420 42.702 -13.850 42.426 42.671 -13.850 42.426 42.666 -13.672 42.426 42.666	16.400 16.400 15.400 15.400 15.400 15.400 15.400 15.400 15.400 15.400 15.400 15.400 13.850 10.672 13.850 	

			<u>n 50 1</u>	<u>in 40 1 in</u> —	n 50	1 in 401 in 30
DATUM41.0 DESIGN SURFACE	43 030	42.794 LBL	42.763	42.708	42.648	42.523 42.413 42.413
EXISTING SURFACE	408	42.414 42.415	42.421	42.429	42.435	42.448 42.448 42.450
OFFSET	90 80 1	-15.400 -15.350	-13.850	-11.650	-8.650	-3.650 -3.500 -3.050

			50 1 in 40	1 in 50	<u>1 in 40</u>	<u>1 in 30</u>		<u>1 in 30</u>
DATUM41.0 DESIGN SURFACE	43.217	42.925 LBL 42.924	42.894	42.860	42.800	42.706 42.556 42.556	42.498 42.448 42.488	
EXISTING SURFACE	42.376	42.381 42.382	42.387	42.393	42.406	42.430 42.431 42.431	42.441 42.442 42.445	
OFFSET	-17.156	-15.400 -15.350	-13.850	-12.517	210°.9-	-5.750 -5.550 -5.550	-3.800 -3.500 -3.050	
						CH 3	05.000	

LTPCH 315.788

CH 290.000

LTPCH 271.636

STATUS

SCALE @ A1 :

Н2

V 1

ROAD RESERVE				
RAFFICABLE PAVEMENT	0.6m B2	4.9m NATURE STRIP	1.5m F'PATH	0.05m
30 <u>1 in 30</u> — — — — —		<u> </u>	1 in 50	1 in 6
42.617 -	42.515 42.475 42.625		42.582 -	42.552 42.551 42.459
42.409	42.424 42.426 42.427		42.450	42.457 42.457 42.459
0.000	3.050 3.500 3.650		8.550	10.050 10.100 10.651

	designed M.PLANT	PROJECT ENGINEER M.TROUNCE	
	DRAWN	PROJECT MANAGER	
1:100 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
	PROJECT No.	DRAWING No.	REVISION
0.5 0 1 2	200282.18	R501	Α

18/10/24 ISSUED FOR TENDER

M.P A.W M.T

			50		in 50	1 in 30	<u>1 in 30 1</u>	<u>in 30 1 i</u>	<u>in 30 1 ir</u>	<u>15.4 1 in</u>	50 1 in Teg	6 ACTIVE OPEN SPACE
DATUM41.0												
DESIGN SURFACE	43.718	43.218 43.217	43.187	43.071	43.011	42.887 42.737 42.777	42.878	42.777 42.737 42.787	42.845 42.995 42.995	42.813	42.783 42.782	42.533
EXISTING SURFACE	42.769	42.747 42.747	42.736	42.716	42.702	42.662 42.652 42.652	42.612	42.603 42.598	42.584 42.583 42.582	42.559	42.546 42.546	42.533
OFFSET	-18.400	-15.400 -15.350	-13.850	-10.393	-7.393		0.000	3.050 3.500 3.800	5.550 5.590 5.750	8.550	10.050 10.100	11.593

TPCH 414.177

LTPCH 406.411

STATUS

SCALE @ A1 :

Н2

V 1

DRAWING TITLE

ALAMORA - STAGE 18 **ROAD CROSS SECTIONS - 3** HERMOSA DRIVE

	DESIGNED M.PLANT	PROJECT ENGINEER	
	DRAWN	PROJECT MANAGER	
E @ A1 : 1:100 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
H 2 1 0 2 4	PROJECT No.	DRAWING No.	REVISION
/ 1 0.5 0 1 2	200282.18	R502	Α

_		1 in 30	1 in 30			1 in 165.6	1 in 50	1 in		ACTIVE OPEN
							#777			SPACE
								RBL		
42.805	42.695	- 902 CV	42.730	42.695 -	42.655 - 42.805 -		42.834 -	42.804 - 42.803 -	42.559 -	
42.687	42.679	10 653	4. 000	42.632	42.629 42.628		42.588	42.574 42.573	42.559	
-3.650	-3.050		0000	3.050	3.500 3.650		8.550	10.050 10.100	11.565	

	1 in 30	1 in 30	1 in 30 1 ir	<u>18.2 1 in 50</u>	1 in 6	ACTIVE OPEN SPACE
					RBL	
42.844 42.694 42.734	42.835 -	42.734 - 42.694 - 42.744 -	42.802 + 42.802 + 42.952 +	42.798 -	42.768 42.767 42.576	
42.694 42.692 42.686	42.642	42.620 42.618 42.618	42.613 42.613 42.613	42.604	42.589 42.588 42.576	
-3.650 -3.500 -3.050	0.000	3.050 3.800 3.800	5.550 5.550 5.750	8.550	10.050 10.100 11.246	

TPCH 417.572

L.O.W CH 422.807

DATUM41.0

OFFSET

DATUM41.0

OFFSET

DESIGN SURFACE

EXISTING SURFACE

DESIGN SURFACE

EXISTING SURFACE

DATUM41.0 DESIGN SURFACE

EXISTING SURFACE

OFFSET

DRAWN CHECKED APPROVED CLIENT ISSUE DESCRIPTION REVISION DATE വസ്തവ properties Communities Designed for Living M.P A.W M.T 18/10/24 ISSUED FOR TENDER Α

CO

Creo

DRAWING TITLE ALAMORA - STAGE 18 ROAD CROSS SECTIONS - 4 ANDRIA DRIVE

L.O.W CH 251.318

PROJECT

42.171 42.140 42.140	1 in 14 1 in 14 1 in 1 in	30 1 ir 41.932	1 in 2 1 in 2 1 in 2 1 in 2 1 in 2 1 in 2	42.065	42.095 42.096 RBL 95	
42.185 42.185 42.185	42.192 42.193 42.195	42.208	42.213 42.213 42.212	42.191	42.179 42.178	
-8.150 -8.100 -6.600	-33.800 -3.650 -3.200	0.000	3.200 3.650 3.800	6.300	7.850	

CH 260.000

	Т	PCH 279.181			
<u>— 1 in 50</u> <u>— 1 in</u>	141 in	<u>30 1 i</u>	in 30 1 in 16.5	<u>1 in 50</u>	
42.215 42.214 42.184	41.984 41.834 41.874	41.980 -	41.874 41.834 41.984	42.135 - 42.165 - 42.166 -	
42.222 42.222 42.222	42.225 42.225 42.226	42.226	42.212 42.208 42.207	42.187 42.175 42.175	
-8.150 -8.150 -6.600	-3.800 -3.650 -3.200	0.000	3.200 3.650 3.800	6.300 7.800 7.850	

	-			16m ROAD RES	ERVE				
0.05m	1.5m	2.8m	0.6m	6.4	m	0.6m	2.5m	1.5m	0.05m
	F'PATH	NATURE STRIP	B2	TRAFFICABLE	PAVEMENT	B2 N	ATURE STRIP	F'PATH	
	1 in 50	<u>1 in 14</u>		1 in 30	1 in 30		<u>1 in 15</u>	1 in 50	
									KBL
	42.311 - 42.310 - 42.3	42.280 -	42.080 41.930 41.970	42 076 -		41.970 41.930 42.080	970 CV	42.240	42.277
	42.245	42.234	42.231 42.231 42.231	42 229		42.228 42.228 42.228		42.224	42.221
	-8.150 -8.100	009.9-	-3.800 -3.650 -3.200	000 0		3.200 3.650 3.800		0.300 7_800	7.850

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

NOTE: CROSS SECTIONS LBL & RBL LABELS REFER TO LEFT AND RIGHT TITLE BOUNDARY RESPECTIVELY, READ IN ASCENDING ORDER ALONG THE RELEVANT LONG SECTION CHAINAGES

NOTE: SELECT STRUCTURAL FILL IN ACCORDANCE WITH WYNDHAM CITY COUNCIL SPECIFICATIONS & REQUIREMENTS IS REQUIRED UNDER PAVEMENT AND FOOTPATHS @ 45° WHERE CONSTRUCTED ABOVE EXISTING SURFACE.

LEGEND

— — — EXISTING SURFACE DESIGN LINE

SELECT STRUCTURAL FILL

STATUS	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION	DRAWN	PROJECT MANAGER	
SCALE @ A1 : 1:100 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
H 2 1 0 2 4	PROJECT No.	DRAWING No.	REVISION
V 1 0.5 0 1 2	200282.18	R503	Α

			40		41			41	41	41	41	41	
	CHAINAGE (Reach Length)	Ξ	0.000	(33.000)	33.000		(23.101)	56.101	(10.062) (10.062)	(12.488) (12.488)	265:06 (11.946)	868.26 (7.301)	(31.848)
VISION	DATE	ISSUE DESCRIPTION			DRAWN	CHECKED	APPROVED	CLIENT					
									N/I				
									V	IIIQV	VUIC		
										pro	operties	S	
								C	ommur	nities Desi	igned for	Living	Suite 1, 2 Bloomsbury Street Newtown, VIC, Australia 3220
Α	18/10/24	ISSUED FOR TENDER			M.P	A.W	M.T						

DESIGN FLOW (m3x) EXISTING ENDPPE 0.711 0.669 0.666 0.450 0.440 DESIGN FLOW (m3x) EARCE VID (m4x) 0.711 0.669 0.666 0.450 0.440 CAPACITY (m4x) 0.711 0.766 0.766 0.566 0.450 0.440 CAPACITY (m4x) 0.711 0.766 0.766 0.560 0.450 0.502 STRING ENDIPPE 0.711 0.766 0.766 0.560 0.450 0.502 STRING ENDIPPE 0.711 0.766 0.766 0.502 0.502 STRING ENDIPPE 0.753 6.150 6.150 6.003 0.502 STRING ENDIPPE 0.753 6.150 6.150 6.150 6.150 6.150 STRING ENDIPE 33.0 11n 100 11n 120 11n 150 11n 150 11n 150 DEPTH TO INVERT 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58<											
COMPECT TO D.711 0.589 0.685 0.460 CAPACITY (m3b) D.711 0.589 0.585 0.460 CAPACITY (m3b) D.711 0.589 0.585 0.460 CAPACITY (m3b) D.711 0.589 0.585 0.502 0.302 CAPACITY (m3b) D.711 0.589 0.585 0.502 0.302 CAPACITY (m3b) D.215 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 675.0 675.9 675.9 600.3 600.3 GRADE 1 in 100 1 in 20 1 in 120 1 in 150 1 in 150 DETH TO INVERT 10 10 1 in 20 1 in 150 1 in 150 INVERT LEVEL 10 10 1 in 120 1 in 120 1 in 150 INVERT LEVEL 10 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 10 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 10 10						$\neg \uparrow$	//				
DESIGN FLOW (m3s) EXSTING ENOPPE 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3s) CAPACITY (m3s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3s) 0.841 0.788 0.788 0.502 0.502 AT GRADE VELOCITY (m8) 2.35 2.15 2.15 1.77 1.77 PIES SIZ (mm) 6759 6759 6759 6009 6009 GRADE 1100 11120 111120 111150 111150 DATUM 33.0 0 11120 111120 111150 111150 HYDRAULIC GRADE LINE 569 569 569 569 569 569 579					////				//		///
DESIGN FLOW (m3a) 0.711 0.669 0.686 0.450 0.446 CAPACITY (m3a) 0.235 2.15 1.77 1.77 1.77 PIPE Size (mm) 6750 6750 6750 6000			///		////		//		//		///
DESIGN FLOW (m36) 0.711 0.669 0.450 0.446 CAPACITY (m36) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m36) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m36) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m36) 0.711 0.669 0.768 0.502 0.522 AT GRADE VELOCITY (m35) 2.35 2.15 1.17 1.17 PIPE SIZE (mm) 6759 6759 6759 6000 6000 DATUM 33.0 1 in 100 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 56 57<			////		////				//		$\angle /$
DESIGN FLOW (m38) EXISTING ENOPPE 0.711 0.669 0.666 0.450 0.446 DESIGN FLOW (m38) CAPACITY (m48) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m48) 0.711 0.669 0.666 0.450 0.446 DESIGN FLOW (m38) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m48) 0.753 0.763 0.502 0.502 0.502 DESIGN FLOW (m38) 2.35 2.15 2.15 2.15 0.763 0.502 0.502 DATUM 2.35 0.750 6750 6000 6000 6000 DEPTH TO INVERT 50 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 50 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000			////		////						///
DESIGN FLOW(m3k) EXISTING ENDPPE 0.711 0.669 0.665 0.459 DESIGN FLOW(m3k) EXISTING ENDPPE 0.711 0.669 0.502 0.665 GRADE VELOCITY (mis) 2.35 2.15 2.15 1.77 1.77 PPE SIZE (mm) 6750 6750 6750 6750 6000 6000 GRADE DATUM 33.0 1 in 100 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 8 8 8 9 9 9 HYDRAULIC GRADE LINE 9 <			////		////				//		$\angle \angle$
DESIGN FLOW (m3s) CAPACITY (m4s) 0.711 0.669 0.666 0.450 0.440 CAPACITY (m4s) 0.711 0.669 0.666 0.450 0.440 CAPACITY (m4s) 0.711 0.768 0.768 0.502 0.502 CAPACITY (m4s) 0.711 0.768 0.768 0.502 0.502 GRADE 0.711 0.768 0.768 0.502 0.502 GRADE 0.711 0.768 0.768 0.502 0.502 GRADE 0.11 100 11 120 11 100 0.777 1.77 DEPTH TO INVERT 6 </td <td></td> <td></td> <td><i> </i> </td> <td></td> <td>////</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			<i> </i>		////						
DESIGN FLOW (m3k) EXISTING ENDPIPE 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3s) 0.841 0.768 0.562 0.502 0.502 AT GRADE VELOCITY (m4s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000 6000 DATUM 33.0 1 in 100 1 in 120 1 in 150 1 in 150 DETH TO INVERT 10 SE 1 SE 1 SE 1 SE 1 SE 1 SE INVERT LEVEL 10 SE 10 SE 1 SE <t< td=""><td></td><td></td><td>////</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			////								
DESIGN FLOW (m3k) EXISTING ENDPIPE 0.711 0.669 0.666 0.450 0.445 DESIGN FLOW (m3k) CAPACITY (m3k) 0.711 0.769 0.666 0.450 0.445 CAPACITY (m3k) 0.841 0.768 0.502 0.502 0.502 AT GRADE VELOCITY (m3k) 2.25 2.15 1.17 1.77 PIPE SIZE (mm) 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT Strain Strain Strain Strain NVERT LEVEL Strain Strain Strain Strain Strain INVERT LEVEL Strain Strain Strain Strain Strain Strain FINISHED SURFACE LEVELS Strain Strain Strain Strain Strain Strain Strain CHAINAGE Strain Strain Strain Strain Strain Strain Strain								V			
DESIGN FLOW (m3k) CAPACITY (m3k) 0.711 0.669 0.686 0.440 CAPACITY (m3k) 0.711 0.768 0.768 0.502 0.502 AT GRADE VELOCITY (ms) 0.841 0.768 0.768 0.602 0.502 AT GRADE VELOCITY (ms) 0.750 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 120 1 in 150 1 in 150 DATUM 33.0 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 DETH TO INVERT 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 10 10 10 1 in 120 1 in 150 INVERT LEVEL 10 10 10 10 10 10 INVERT LEVEL 10 10 10 10 10 10 10 EXISTING SURFACE LEVELS 10 10 10 10 10 10 10 10 10 10 10										Ť	
DESIGN FLOW (m3is) CAPACITY (m3is) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3is) 0.841 0.788 0.592 0.592 0.592 AT GRADE VELOCITY (m3is) 0.841 0.768 0.759 0.592 0.592 AT GRADE VELOCITY (m3) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6750 6750 6750 6750 111 150 1 in 150											
DESIGN FLOW (m39) EXISTING ENDPIPE 0.711 0.669 0.666 0.450 0.446 DESIGN FLOW (m39) EXISTING ENDPIPE 0.711 0.669 0.666 0.450 0.446 DESIGN FLOW (m39) EXENDED 0.711 0.669 0.666 0.450 0.446 AT GRADE VELOCITY (mis) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000											
DESIGN FLOW (m3is) CAPACITY (m3s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3s) 0.841 0.788 0.768 0.766 0.502 0.502 CAPACITY (m3s) 0.841 0.768 0.766 0.502 0.502 0.502 CAPACITY (m3s) 2.35 2.15 2.15 1.77 1.77 PIE SIZE (mn) 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 DEPTH TO INVERT 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 110 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 110 10 10 10 10 10 10 10 INVERT LEVEL 110 10 10 10 10 10 10 10 INVERT LEVEL 110 10 10 10 10 10 10 10 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-									
CONNECT TO EXISTING ENDPIPE 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.768 0.502 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6000 6000 GRADE 33.0 1in 100 1 in 120 1 in 150 1 in 150 1 in 150 DETH TO INVERT 90 <t< td=""><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	/										
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.768 0.502 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6000 6000 DATUM 33.0 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 1 in 150 DETH TO INVERT 50 </td <td></td>											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.768 0.502 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000											
DESIGN FLOW (m3s) 0.711 0.669 0.696 0.450 0.446 CAPACITY (m3s) 0.841 0.768 0.562											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.566 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.768 0.502											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.768 0.602 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 20 1 in 120 1 in 150 1 in 150 1 in 150 DEPTH TO INVERT 0.902 0.902 0.902 0.902 0.902 1 in 150 1 in 150 INVERT LEVEL 10 10 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 10<											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.788 0.788 0.502 0.502 0.502 AT GRADE VELOCITY (m/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 150 1 in 150 DATUM 33.0 502 502 502 502 500 HYDRAULIC GRADE LINE 502 500 500 500 500 500 500 500 500 502 502 502 502 502 502 502 502 502 502 502											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.502 0.502 0.502 0.502 AT GRADE VELOCITY (m/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 8 9											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 CAPACITY (m3/s) 0.841 0.768 0.502 0.502 0.502 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 0.606 0.600 6000 <											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 AT GRADE VELOCITY (m/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000 6000 6000 6000 GRADE 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 1 in 150 DEPTH TO INVERT 6750 6750 6750 6750 6000 6000 INVERT LEVEL 10 10 1 in 120 1 in 150 1 in 150 1 in 150 INVERT LEVEL 10 10 10 1 in 120 1 in 150 1 in 150 INVERT LEVEL 10											
DESIGN FLOW (m3/s) CAPACITY (m3/s) 0.711 0.669 0.666 0.450 0.446 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 0.502 0.502 AT GRADE VELOCITY (m3/s) 2.35 2.15 2.15 0.606 0.600 0.600 GRADE 6750 6750 6750 6750 6000 6000 DATUM 33.0 1 in 100 1 in 120 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 0500 0500 0500 0500 0500 05000 HYDRAULIC GRADE LINE 100 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 INVERT LEVEL 1100 1100 1100 1100 0000 0000 0000 INVERT LEVEL 1100 1100 1100 1100 1100 1100 1100 1100 1100 INVERT LEVEL 1100 1100 1100 1100 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000											
CAPACITY (m3/s) 0.841 0.768 0.768 0.502 0.502 AT GRADE VELOCITY (m/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 052 052 052 052 050 0000 6000 INVERT LEVEL 10 052 052 052 052 052 050 00000 0000 000	DESIGN FLOW (m3/s)	<	0.711	><	0.669	>	0.666	~	0.450	~	0.446
AT GRADE VELOCITY (m/s) 2.35 2.15 2.15 1.77 1.77 PIPE SIZE (mm) 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 6750 6750 6750 6750 6750 6000 6000 INVERT LEVEL 6750 6750 6750 6750 6750 6750 6000 6000 INVERT LEVEL 1 in 100 1 in 120 1 in 150 1 in 150 1 in 150 1 in 150 FINISHED SURFACE LEVELS 100 100 100 100 100 100 100 100 CHAINAGE 00 600	CAPACITY (m3/s)		0.841		0.768		0.768		0.502		0.502
PIPE SIZE (mm) 6750 6750 6750 6000 6000 GRADE 1 in 100 1 in 120 1 in 120 1 in 120 1 in 150 1 in 150 DATUM 33.0 982 27 27 27 27 1 in 150 DEPTH TO INVERT 695 82 82 666 600 6000 HYDRAULIC GRADE LINE 10	AT GRADE VELOCITY (m/s)	<	2.35	><	2.15	>	< ── 2.15 ·	><	— 1.77 —	><	— 1.77 -
GRADE 1 in 100 1 in 120 1 in 120 1 in 120 1 in 150 1 in 150 DATUM 33.0 000 000 000 000 1 in 120 1 in 150 1 in 150 DEPTH TO INVERT 000 000 000 000 000 000 000 000 HYDRAULIC GRADE LINE 000 000 000 000 000 000 000 000 INVERT LEVEL 1111 1111 111 111	PIPE SIZE (mm)	<	— 675Ø ——	><	— 675Ø —	~~~	< 675Ø	~	600Ø	~~~	- 600Ø
GRADE 1 in 100 1 in 120 1 in 150 1					0.00		01.000				
DATUM 33.0 4 4 DEPTH TO INVERT 5009 5009 5009 50000 5000 50000 <td>GRADE</td> <td><</td> <td>— 1 in 100 ———</td> <td>><</td> <td>—— 1 in 120 —</td> <td>~~</td> <td>< 1 in 120</td> <td>><</td> <td>- 1 in 150</td> <td>-><</td> <td>– 1 in 150</td>	GRADE	<	— 1 in 100 ———	><	—— 1 in 120 —	~~	< 1 in 120	><	- 1 in 150	-><	– 1 in 150
DEPTH TO INVERT 889 822 827 827 827 827 HYDRAULIC GRADE LINE 889 612,66 124,66 126,17 126,10 900,07 INVERT LEVEL 191 111,98 127,27 126,10 126,10 147,07 FINISHED SURFACE LEVELS 190,07 900,07 111,10 111,94 111,94 CHAINAGE 000 000,07 000,07 101,99 112,488 111,946	DATUM	33.0									
DEPTH TO INVERT 2		.503		.378		.286	.236	.137		.131	2
HYDRAULIC GRADE LINE 18 11 <th< td=""><td>DEPTHTOINVERT</td><td>5 5</td><td></td><td>5 5</td><td></td><td>5</td><td>7</td><td>0</td><td></td><td>0</td><td>1</td></th<>	DEPTHTOINVERT	5 5		5 5		5	7	0		0	1
HYDRAULIC GRADE LINE 376 1/16				22 10		5	<u></u>	1		7 7	
INVERT LEVEL INVERT LEVEL <th< td=""><td>HYDRAULIC GRADE LINE</td><td>9.48</td><td></td><td>9.71 9.78</td><td></td><td>6.93</td><td>6.61</td><td>0.0</td><td></td><td>0.20</td><td>1</td></th<>	HYDRAULIC GRADE LINE	9.48		9.71 9.78		6.93	6.61	0.0		0.20	1
INVERT LEVEL 141.88 141.88 141.88 125.88 88.05 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.68 901.14 900.14 </td <td></td> <td>т </td> <td></td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td></td> <td>ۍ ۲</td> <td>ന</td> <td>4 4</td> <td></td> <td>4 4</td> <td>r</td>		т 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ۍ ۲	ന	4 4		4 4	r
INVERT LEVEL 8 9 <t< td=""><td></td><td>141</td><td></td><td>471 521</td><td></td><td>713</td><td>763</td><td>847 922</td><td></td><td>005</td><td>2</td></t<>		141		471 521		713	763	847 922		005	2
FINISHED SURFACE LEVELS 400 8800 660000 660000 660000 66	INVERT LEVEL	33.		38.		38.		38.9		39.(39.(5
FINISHED SURFACE LEVELS 10/10 <th10 10<="" th=""> 10/10 <th10 1<="" td=""><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th10></th10>				~							
EXISTING SURFACE LEVEL 80/4 4 4 4 4 CHAINAGE 80/6 </td <td>FINISHED SURFACE LEVELS</td> <td>0.64</td> <td></td> <td>).84{</td> <td></td> <td>366.(</td> <td></td> <td>1.05</td> <td></td> <td>1.13(</td> <td></td>	FINISHED SURFACE LEVELS	0.64).84{		366.(1.05		1.13(
EXISTING SURFACE LEVEL 90/40 90/		4(4(4(, 4		4	
EXISTING SURFACE LEVEL Log O <tho< th=""> O O <tho< td="" th<=""><td></td><td>68</td><td></td><td>05</td><td></td><td>97</td><td></td><td>99</td><td></td><td>86</td><td></td></tho<></tho<>		68		05		97		99		86	
CHAINAGE Solution Solutity andity and its and its andity and its and its andity and its a	EXISTING SURFACE LEVEL	40.7		41.0		41.2		41.3		41.4	
CHAINAGE 00/03 00/05											
Image: Contraint AGE Image: Co		.000		000		.101		.163		.651	
(10.000) (10.002) (12.400) (11.940		0	(33.000)	33	(23 101)	56	(10 062	96	(12 488)	78	(11 0/6)
			100.0001		(20.101)		(10.002		(12.400)		(11.940
	CHAINAGE Reach Length)		(00.000)								
	CHAINAGE Reach Length)		(00000)								

(2)

1

(3)

4

(6)

5

🛹 1 in 300 >

2.062 2.012

40.378 40.401

39.209 39.259

41.271

.684

Ex.10EP

P:\2020\200282 - ALAMORA, TARNEIT/200282.18\CI

R600

200282.18

Α

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT		
						V/I		
							properties	
						_	properties	2
						Communit	ies Designed for I	iving
A	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T			9

	[
			\geq			
	(\leq				
		, ,				
DESIGN FLOW (m3/s)		0.068	3	0.065	0.027	
CAPACITY (m3/s)		0.071	1	< 0.105	0.040	
AT GRADE VELOCITY (m/s)		~ 1-	->	< 1.48	><1	
PIPE SIZE (mm)		< 3000) >	< 300Ø	~ 2250 –	
		 < 1 in 18 3/1 ∩ 	37 >	< 1 in 85	→< 1 in 128 —	
	078	353 5	312	362	2 66 6	
DEPTH TO INVERT	2.0	1.8	1.			
	836	917	960	0052	6687	
HYDRAULIC GRADE LINE	40.	40.	40.	44	4	
	.837	.062	.109	.559		
	39	40	40	4	4	
	915		1.921			
	.			-	r	
FINISHED SURFACE LEVELS	3 41.					
EXISTING SURFACE LEVEL	42.143 41.		42.139			
EXISTING SURFACE LEVELS	0 42.143 41.		12 42.139 4			
EXISTING SURFACE LEVELS	0.000 42.143 41.		8.682 42.139 4			

8

FUTURE ROAD

[′] 17

(18)

(26)

BETHANY ROAD

PROJECT

DRAWING TITLE

ALAMORA - STAGE 18 DRAINAGE LONG SECTIONS - 2 STATUS

41.609 41.853

Suite 1, 2 Bloomsbury Street Newtown, VIC, Australia 3220

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

LEGEND

EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT HYDRUALIC GRADE LINE

CRUSHED ROCK BACKFILL PROPOSED SEWER MAIN

	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION	DRAWN	PROJECT MANAGER	
1:500 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
5 0 10 20	PROJECT No.	DRAWING No.	REVISION
0.5 0 1 2	200282.18	R601	Α

REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	
						properties
						properties
						Communities Designed for Living
А	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T	,

				/		ROAD A	
CONNECT TO EXISTING ENDPIPE							
DESIGN FLOW (m3/s) CAPACITY (m3/s)	<u> </u>	0.151	0.152	><	<u> </u>	0.068> 0.165	0.040
AT GRADE VELOCITY (m/s)	~ 1.15	<u>→</u> 1.15 →	1.15	><	— 1.04 ———>	1.04⇒	1
PIPE SIZE (mm)	< 525Ø	→< 525Ø >	- 525Ø	><	450Ø>	450Ø⇒	375Ø
GRADE DATUM	< 1 in 3034.0	0 >-< 1 in 300 >	1 in 300	><	- 1 in 300	1 in 300 ────>	1 in 252
DEPTH TO INVERT	1.887 1.887	1.873 1.873 1.884	1.884	1.903	2.006	1.956	1.663
HYDRAULIC GRADE LINE	41.626	41.632 41.658 41.657 41.666	41.676	41.708	41.737	41.739	41.763
INVERT LEVEL	40.453 40.453	40.470 40.470 40.495	40.495	40.584	40.727	40.871	40.946
FINISHED SURFACE LEVELS	42.340	42.343		42.498	42.734	42.608	
EXISTING SURFACE LEVEL	42.507	42.512 42.503		42.450	42.395 42.395	42.364	
CHAINAGE (Reach Length)	8. (5.307) (7.262) (7.262)	(11.869)	24.441	42.952)	(27.984)	(20.812)

(30)

(31)

(28)

(29)

(Ex.26EP) (27)

ė. L

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

LEGEND

EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT HYDRUALIC GRADE LINE

CRUSHED ROCK BACKFILL PROPOSED SEWER MAIN

REVISION

Α

PIT NUMBER	TYPE	INTE WIDTH (mm)	ERNAL LENGTH	DIA.	NLET INVERT RL	DIA.	INVERT RL	COVER LEVEL (m)	DEPTH (m)	STANDARD DRAWING	REMARKS
Ex.10EP	ENDPIPE		(((((((((((((((((((((((((((((((((((((((675	38.141	(1111)		40.644	2.503		CONNECT TO EXISTING ENDPIPE
1	JUNCTION PIT	900	900	675	38.521	675	38.471	40.848	2.378	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
				FUT.300	38.846						PROVIDE 300Ø BLOCKOUT TO WEST AT IL38.846 FOR FUTURE CONNECTION.
2	JUNCTION PIT	900	900	675	38.763	675	38.713	40.999	2.286	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
3	JUNCTION PIT	900	900	600	38.922	675	38.847	41.059	2.212	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
				FUT.525	38.997						PROVIDE 525Ø BLOCKOUT TO WEST AT IL38.997 FOR FUTURE CONNECTION.
4	JUNCTION PIT	900	900	600	39.055	600	39.005	41.136	2.131	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
5	JUNCTION PIT	900	900	600	39.185	600	39.135	41.22	2.086	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
				FUT.375	39.36						PROVIDE 375Ø BLOCKOUT TO WEST AT IL39.360 FOR FUTURE CONNECTION.
6	JUNCTION PIT	900	900	600	39.259	600	39.209	41.271	2.062	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
7	JUNCTION PIT	900	900	525	39.44	600	39.365	41.479	2.114	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
8	JUNCTION PIT	900	900	525	39.887	525	39.837	41.915	2.078	EDCM 607	HAUNCHED TO 600x900 COVER. CONSTRUCT PIT TO FUTURE DESIGN LEVEL.
				300	40.062						
9	JUNCTION PIT	900	900	525	39.981	525	39.931	41.983	2.052	EDCM 607	HAUNCHED TO 600x900 COVER.
-				225	40.631						
10	GRATED SIDE ENTRY PIT	900	900	450	40.175	525	40.1	42.214	2.114	EDCM 601 & 607	HAUNCHED TO 600x900 COVER
				300	40.15	520		т			
11	GRATED SIDE ENTRY PIT	600	900	375	40.301	450	40 226	42 144	1 918	EDCM 601	
12		600	900	375	40.43	375	40.38	42 369	1.99	EDCM 605	
13		600	900	300	40 537	375	40.462	42.000	1 806	EDCM 605	
10			300	375	40.507	515		72.200	1.000		
14		600	900	300	40.012	300	40.888	42 628	1 74	EDCM 605	
15	GRATED PIT	600	900	300	41.002	300	40.952	42 358	1.74	EDCM 605	SUPPLY CLASS D BIKE SAFE GALVANISED GRATING COVER
16		600	900	500	41.002	300	41.072	42.358	1.400	EDCM 605	
17		600	900	300	40 559	300	40.109	41 021	1.200	EDCM 601	
18		600	900	225	40.339	300	40.109	41.321	1.012	EDCM 605	
10		600	900	225	41.55	225	41.273	42.443	0.020	EDCM 605	
20		600	900			225	41.709	42.718	1 007	EDCM 605	
20		600	900	200	40.26	225	41.192	42.199	2.205	EDCM 605	
21		600	900	300	40.20	300	40.21	42.415	1.622	EDCM 605	
22		600	900	300	40.409	300	40.409	42.04	1.002	EDCM 605	
23		600	900	300	40.423	300	40.423	41.709	1.340	EDCM 605	
24		600	900	375	40.648	375	40.493	41.77	1.277	EDCM 603	SUFFET CLASS D BIKE SAFE GALVANISED GRATING COVER
20		750	1000	575	+0.0+0	375	40.728	42.133	1.605	WCC STD DWG SD5-1	SUPPLY CLASS B GRATING COVER
20 Ex 26EP		730	1000	525	40 453	575	40.720	42.33	1.887		
27		900	000	525	40.433	525	40.47	42.04	1.007	EDCM 607	
21		900	900	525	40.47	525	40.47	42.343	1.073	EDCM 607	
20		900	900	450	40.495	525	40.495	42.378	1.004		
29		900	900	450	40.384	525	40.534	42.490	1.903		HAUNCHED TO DUUX900 COVER.
20		600	000	300	40.709	450	40 707	10 701	2.006		
30		000	900	400	40.77	450	40.727	42.734	2.000		
				200	40.077						
21		600	000	275	40.077	450	40.974	12 609	1 720		
51		000	900	200	40.940	450	40.071	42.000	1.730		
20		600	000	300	41.021	97E	41.000	40 707	1 670	EDOM 605	
ىد مە		600	900	3/5	41.028	315	41.028	42.707	1.079		
33		000	900	300	41.182	3/5	41.107	42.801	1.094		
04		000	000	300	41.182	202	44.005	40.000	4 407		
34		000	900	000	40.007	300	41.325	42.823	1.497		
30 26		600	900	300	40.827	300	40.777	42.445	1.008		
30	GRATED SIDE ENTRY PIT	600	900	300	40.93	300	40.88	42.448	1.569	EDCM 601	
07		750	4000	300	40.93	000		10 501	4 50 4		
37	GRATED PIT	/50	1000	_		300	41.01	42.531	1.521	VVCC STD DVVG SD5-1	
38	GRATED PIT	600	900		40.000	300	41.18	42.607	1.427	EDCM 605	
39EP	ENDPIPE			300	40.938	300	40.938	42.824	1.885		ENDPIPE TO BE SEALED AND CAPPED FOR FUTURE CONNECTION.
42	GRATED SIDE ENTRY PIT	600	900			300	40.898	42.65	1.751	EDCM 601	
43	2 x GRATED PIT	600	900	300	41.035	300	41.035	42.339	1.304	EDCM 605	SUPPLY CLASS D BIKE SAFE GALVANISED GRATING COVER
44	2 x GRATED PIT	600	900			300	41.105	42.339	1.234	EDCM 605	SUPPLY CLASS D BIKE SAFE GALVANISED GRATING COVER
45	GRATED PIT	600	900	300	41.197	300	41.197	42.532	1.335	EDCM 605	SUPPLY CLASS D BIKE SAFE GALVANISED GRATING COVER
46	GRATED PIT	600	900			300	41.267	42.531	1.265	EDCM 605	SUPPLY CLASS D BIKE SAFE GALVANISED GRATING COVER

1) ** - DENOTES PIT IS HAUNCHED TOWARDS ROAD CENTRELINE (UNDER ROAD PAVEMENT/KERB) 2) ALL PIT COVERS TO BE PROVIDED IN ACCORDANCE WITH EDCM 605 - PIT COVER SCHEDULE.

3) PITS WITHIN ROAD RESERVES ARE TO BE BACKFILLED AND COMPACTED WITH CLASS 3 FCR IN

ACCORDANCE WITH WYNDHAM CITY COUNCIL SPECIFICATIONS AND REQUIREMENTS.

LIP OF KERB

Suite 1, 2 Bloomsbury Street Newtown, VIC, Australia 3220

BACK OF KERB INVERT OF KERB

BACK OF KERB INVERT OF KERB

LIP OF KERB

PIT CENTRE SETOUT POINT (ALIGN WITH PROPOSED KERB)

PIT CENTRE SETOUT POINT (ALIGN WITH PROPOSED KERB)

TYPICAL DRAINAGE PIT SETOUT DETAIL

GRATED SIDE ENTRY PIT REFER TO EDCM 601, 602 & 603 NOT TO SCALE

PROJECT

DRAWING TITLE

ALAMORA - STAGE 18 PIT SCHEDULE

STATUS

SCALE @ A1 :

PITS 1, 5, 7, 8 & 17 TO BE CONSTRUCTED TO THEIR ULTIMATE COVER LEVEL AS INDICATED IN THE PIT SCHEDULE, WITH APPROPRIATE PIT COVER AS PER EDCM 605. PROVIDE DN225 BLOCK OUT FOR FUTURE CONVERSION TO A GSEP AS PER EDCM 601. SUPPLY PIT 8 WITH CLASS D ACCESS COVER.

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

SETOUT DETAIL

DOUBLE GRATED SIDE ENTRY PIT REFER TO EDCM 602 & 603 NOT TO SCALE

REFER TO EDCM 602 NOT TO SCALE

	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOTION CONSTRUCTION	DRAWN	PROJECT MANAGER	
	M.PLANT	M.TROUNCE	
	PROJECT No.	DRAWING No.	REVISION
	200282.18	R603	Α

PAVEMENT COMPOSITION RAISED PAVEMENT (REFER R702 FOR DETAILS)

		CLIENT	APPROVED	CHECKED	DRAWN	ISSUE DESCRIPTION	DATE	EVISION
		V I						
	properties							
Suite 1, 2 Bloomsbury Stre	unities Designed for Living	Commun						
Newtown, VIC, Australia 32	undes Designed for Living	Continuit	МТ	A W	MP		18/10/24	Δ
			M.T	A.W	M.P	ISSUED FOR TENDER	18/10/24	А

PAVEMENT DESIGNS

NOTE

AND COMPACTED IN ACCORDANCE WITH WYNDHAM CITY COUNCIL SPECIFICATIONS AND REQUIREMENTS.

PAVEMENT COMPOSITION ROAD A

695mm DEPTH NTS

PROJECT

DRAWING TITLE

ASPHALT (WEARING) COURSE:

- BASE COURSE:

CAPPING:

DENSITY AS1289, 5.1.1.

DENSITY AS1289, 5.1.1.

- CONSTRUCTION:

- SUBGRADE:

AS1289, 5.1.1

30mm COMPACTED DEPTH SIZE 10 TYPE N CLASS 320

30mm COMPACTED DEPTH SIZE 10 TYPE N CLASS 320

130mm COMPACTED DEPTH 20mm CLASS 2 CRUSHED ROCK.

A MINIMUM DENSITY RATIO 96% (MODIFIED) AS1289, 5.2.1

COMPACTED TO A MINIMUM DENSITY RATIO 98% (MODIFIED) AS1289, 5.2.1

150mm TYPE A FILL MATERIAL (MINIMUM CBR 7%, MAXIMUM SWELL 1.5%,

PERMEABILITY k \leq 5x10⁻⁹m/s (5x 10⁻⁷cm/s) COMPACTED TO A MINIMUM

CHARACTERISTICS DENSITY RATIO OF 98% STANDARD, MAXIMUM DRY

150mm TYPE A FILL MATERIAL (MINIMUM CBR 7%, MAXIMUM SWELL 1.5%,

PERMEABILITY k \leq 5x10⁻⁹m/s (5x 10⁻⁷cm/s) COMPACTED TO A MINIMUM

CHARACTERISTICS DENSITY RATIO OF 98% STANDARD, MAXIMUM DRY

MATERIAL AS FOUND (CLAY), CBR 1%. TOP 200mm SCARIFIED, MOISTURE

CONDITIONED AND COMPACTED TO MINIMUM DENSITY OF 98% (STANDARD)

200mm COMPACTED DEPTH 20mm CLASS 3 CRUSHED ROCK. COMPACTED TO

5mm SIZE 10mm SAMI WITH CLASS S45R BINDER

BITUMINOUS PRIME OR SIZE 7mm PRIMESEAL

ALAMORA - STAGE 18 **PAVEMENT DETAILS**

WARNING

BEWARE OF UNDERGROUND & OVERHEAD SERVICES The locations of underground & overhead services are approximate only & their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works DIAL 1100 BEFORE YOU DIG www.**1100**.com.au

NOTE

PAVEMENT LAYERS ARE TO BE CONSTRUCTED AND COMPACTED IN ACCORDANCE WITH WYNDHAM CITY COUNCIL SPECIFICATIONS AND REQUIREMENTS.

- 600B2 PARKING OUT STAND KERB
- 600M2 KERB
- ASPHALT - BASE COURSE
- SUBBASE COURSE
- CAPPING/CONSTRUCTION LAYER - SUBGRADE
- 100Ø CLASS 400 PERVIOUS PIPE WITH SECOND STAGE GEOTEXTILE SOCK TYPE A1, A2 OR A3 FILTER BACKFILL
- NOTES: CONDUITS FOR GAS, WATER, ELECTRICITY AND TELECOM SERVICES TO BE LOCATED CLEAR OF PAVEMENT AND SUBSURFACE DRAIN
- 600B2 PARKING OUT STAND KERB - 750M2 KERB - ASPHALT BASE COURSE - SUBBASE COURSE - CAPPING/CONSTRUCTION LAYER - SUBGRADE 100Ø CLASS 400 PERVIOUS PIPE WITH SECOND STAGE GEOTEXTILE SOCK TYPE A1, A2 OR A3 FILTER BACKFILL
- NOTES: CONDUITS FOR GAS, WATER, ELECTRICITY AND TELECOM SERVICES TO BE LOCATED CLEAR OF PAVEMENT AND SUBSURFACE DRAIN

SECTION THROUGH PARKING

(DIM. IN mm)

NOT TO SCALE

	DESIGNED	PROJECT ENGINEER	
	M.PLANT	M.TROUNCE	
NOT FOR CONSTRUCTION	DRAWN	PROJECT MANAGER	
1:500 (H) 1:50 (V)	M.PLANT	M.TROUNCE	
	PROJECT No.	DRAWING No.	REVISION
0.5 0 1 2	200282.18	R701	Α

6

LINEMARKING & SIGNAGE NOTES:

STREET SIGN SCHEDULE

1No.

1No.

2No.

3No.

1No.

1No.

TIERRA BOUL.

ANDRIA DRIVE

BETHANY ROAD

ROAD A

ROAD B

HERMOSA DRIVE

- 1. ALL LINE MARKING AND SIGNAGE TO BE INSTALLED IN ACCORDANCE WITH AS 1742.1 AND AS 1742.2, UNLESS SPECIFICALLY SHOWN OTHERWISE.
- 2. LINEMARKING IS TO BE INSTALLED USING EXTRUDED LONG LIFE THERMOPLASTIC PAINT. TEMPORARY LINEMARKING USING ORDINARY PAINT IS TO BE APPLIED WHEN WEARING COURSE ASPHALT IS NOT APPLIED FOR A PERIOD OF TIME E.G. AT PRACTICAL COMPLETION.
- ALL TEMPORARY WARNING SIGNS USED DURING CONSTRUCTION SHALL BE IN ACCORDANCE WITH AS 1742-3.
- 4. LINEMARKING SET OUT SHALL BE INSPECTED AND APPROVED BY COUNCIL BEFORE FINAL LINEMARKING IS CARRIED OUT.
- HIGH FRICTION SURFACE TREATMENT COLOURED EMERALD GREEN MUST BE PROVIDED WITHIN THE BICYCLE LANES MARKED AS GREEN ON THE PLAN. INSTALLATION MUST COMPLY WITH VICROADS STANDARD SECTION 430 FOR HIGH FRICTION SURFACE TREATMENTS TO MANUFACTURER'S SPECIFICATIONS.

				-			
REVISION	DATE	ISSUE DESCRIPTION	DRAWN	CHECKED	APPROVED	CLIENT	
						VIIIawood	
						properties	
						Communities Designed for Living	Suite 1 Newtov
A	18/10/24	ISSUED FOR TENDER	M.P	A.W	M.T		1

	SIGN SCHEDULE		
	SIGN	REF	QUANTITY
			REFER TABLE
	GIVE WAY R1-2	2	4No.
	ROAD CLOSED T2-4A D4-5	3	2No.
	W6-9 W5-10A Z0 km/h W8-2A	4	6No.
	* W6-9	5	1No.
	R8-3A(L)	6	4No.
	R8-3A(R)	7>	4No.
	W5-10А <u>20</u> кт/п W8-2А	8	2No.
	R5-35R	9	1No.
	ROAD AHEAD W6-8		8No.
1801	R5-35L		1No.

				200282.18	R800	A
10 20 30			PROJECT No.	DRAWING No.	REVISION	
10	20	30	N	M.PLANT	M.TROUNCE	
IOT FOR CONSTRUCTION				DRAWN	PROJECT MANAGER	
		R	N	M.PLANT	M.TROUNCE	
				DESIGNED	FROJECT ENGINEER	