

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

3rd December 2019

Our Reference: 18094:NB616

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING AQUAREVO – STAGE 6 (LYNDHURST)

Please find attached our Report No's 18094/R001 to 18094/R012 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in October 2018 and was completed in October 2019.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1 (1 of 2)

Designer (RDN) 8366 Assessment (AD) Designer (Stress M) 8366F D6 D01 59 DFT due ID01

FIGURE 1 (2 of 2)

CIVIL GEOTECH	INICAL SERVICES	Job No Report No	18094 18094/R001
6 - 8 Rose Avenue	Croydon 3136	Date Issued	19/10/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KS
Project	AQUAREVO - STAGE 6	Date tested	17/02/18
Location	LYNDHURST	Checked by	JHF
LUCATION	LINDHURSI	Checked by	JUL

Feature

EARTHWORKS

Layer t

Layer thickness

200 mm

Time: 06:58

Test procedure AS 1289.2.1.1 & 5.8.1

Test NO		1	2	3	4	5	6
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1					
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.72	1.69	1.86	1.74	1.75	1.67
Field moisture content	%	29.4	34.5	27.3	24.4	18.8	26.4
Test procedure AS 1289.5.7.1 Test No		1	2	3	4	5	6
Compactive effort		- 1	2	 Star		5	0
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.75	1.73	1.87	1.76	1.76	1.69
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	28.5	33.0	25.0	22.5	17.0	26.0
Moisture Variation From		1.0%	2.0%	2.5%	2.5%	2.5%	2.0%
		wet	wet	wet	wet	wet	wet
Optimum Moisture Content							
Optimum Moisture Content							

Material description

No 1 - 6 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

CIVIL GEOTECHNICAL S 6 - 8 Rose Avenue, Croydon	SERVICES 3136					J F L	lob No Report No Date Issued	18094 18094/R002 11/06/2018
ClientWINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)ProjectAQUAREVO - STAGE 6LocationLYNDHURST						ר ב כ	Fested by Date tested Checked by	CSM 17/02/18 JHF
<i>Feature</i> EARTH	WORKS		Lay	er thickness	200	mm	Time	: 07:45
Test procedure AS 1	289.2.1.1 & 5.8.1							
Test No			7	8	9	10	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	1	
Approvimate depth bel								
Measurement depth	JWFSL	mm	175	175	175	175		
Field wet density		t/m ³	1.72	1.81	1.74	1.76		
Field moisture content		%	33.2	34.5	39.0	32,8	-	
Test procedure AS 12 Test No	289.5.7.1		7	8	9	10	-	-
Compactive effort	- *		10.0	10.0	Stan			
Oversize rock retained	on sieve	mm	19.0	19.0	19.0	19.0	-	<u>-</u>
Percent of oversize ma	teriai	Wet	1 00	U 1 01	U 1 01	U 1 01	-	
Adjusted Deak Convert	ensity	1/111 ³	1.80	1.81	1.81	1.81	-	-
Optimum Moisture Con	ed Wei Density	0/11°	-	-	-	- 30.5	-	-
Optimum Moisture Con	leni	70	31.0	32.0	30.0	30.5	-	-
Moisture Varia	tion From		2.0%	2.5%	2.5%	2.0%	-	-
Optimum Moist	ire Content		wet	wet	wet	wet		
		0/	05.5	100.0	00 F	07.5		T 1
Density Ratio (R _{HD})		%	95.5	100.0	96.5	97.5	-	-
<i>Material description</i> No 7 - 10 Clay Fil	l							
							AVR	LOT HILF V1.10 MAR 13

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

CIVIL GEOTECHNICAL SERVICES Report No 18	18094/R003
6 - 8 Rose Avenue, Croydon 3136 Date Issued 20	20/07/2018
Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested by CC	CGS
Project AQUAREVO - STAGE 6 Date tested 19	19/02/18
Location LYNDHURST Checked by JH	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 13:54

Test procedure AS 1289.2.1.1 & 5.8.1

		11	12	13	14	15	16
Location		REFER TO FIGURE 1					
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.71	1.72	1.78	1.70	1.69	1.69
Field moisture content	%	25.4	29.4	31.1	26.6	24.4	26.8
Test procedure AS 1289.5.7.1 Test No Compactive effort		11	12	13 Stan	14 Idard	15	16
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.76	1.75	1.80	1.75	1.75	1.75
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
	%	23.5	27.5	29.0	24.5	22.0	24.5
Optimum Moisture Content							-
Optimum Moisture Content							
Optimum Moisture Content Moisture Variation From		2.0%	2.0%	2.0%	2.0%	2.5%	2.5%
Optimum Moisture Content Moisture Variation From Optimum Moisture Content		2.0% wet	2.0% wet	2.0% wet	2.0% wet	2.5% wet	2.5% wet

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

	Job No	18094
CIVIL GEOTECHNICAL SERVICES	Report No	18094/R004
6 - 8 Rose Avenue, Croydon 3136	Date Issued	23/05/2019
Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	CGS
Project AQUAREVO - STAGE 6	Date tested	20/02/18
Location LYNDHURST	Checked by	JHF

 Feature
 EARTHWORKS
 Layer thickness
 200 mm
 Time: 07:42

Test procedure AS 1289.2.1.1 & 5.8.1

restino		17	18	19	20	21	22
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	ТО	ТО	ТО	ТО	то
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.69	1.69	1.85	1.79	1.77	1.78
Field moisture content	%	38.7	32.8	28.4	28.8	32.0	26.6
Test was a shown AO 4000 F 7 4							
Test procedure AS 1289.5.7.1		17	18	10	20	21	22
Test procedure AS 1289.5.7.1 Test No Compactive effort		17	18	19 Star	20 dard	21	22
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve	mm	17	18	19 Star 19.0	20 idard 19.0	21 19.0	22 19.0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	mm wet	17 19.0 0	18 19.0 0	19 Star 19.0 0	20 dard 19.0 0	21 19.0 0	22 19.0 0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Densitv	mm wet	17 19.0 0 1.72	18 19.0 0 1.72	19 Star 19.0 0 1.88	20 dard 19.0 0 1.83	21 19.0 0 1.79	22 19.0 0 1.80
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	mm wet t/m ³	17 19.0 0 1.72	18 19.0 0 1.72	19 Star 19.0 0 1.88	20 dard 19.0 0 1.83	21 19.0 0 1.79	22 19.0 0 1.80
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ %	17 19.0 0 1.72 - 39.0	18 19.0 0 1.72 - 34.5	19 Star 19.0 0 1.88 - 28.5	20 dard 19.0 0 1.83 - 31.0	21 19.0 0 1.79 - 35.0	22 19.0 0 1.80 - 29.0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ t/m ³	17 19.0 0 1.72 - 39.0	18 19.0 0 1.72 - 34.5	19 Star 19.0 0 1.88 - 28.5	20 dard 0 1.83 - 31.0	21 19.0 0 1.79 - 35.0	22 19.0 0 1.80 - 29.0
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	mm wet t/m³ t/m³	17 19.0 0 1.72 - 39.0 0.5%	18 19.0 0 1.72 - 34.5 1.5%	19 Star 19.0 0 1.88 - 28.5 0.5%	20 dard 19.0 0 1.83 - 31.0 2.5%	21 19.0 0 1.79 - 35.0 2.5%	22 19.0 0 1.80 - 29.0 2.5%
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet t/m ³ t/m ³ %	17 19.0 0 1.72 - 39.0 0.5% dry	18 19.0 0 1.72 - 34.5 1.5% dry	19 Star 0 1.88 - 28.5 0.5% dry	20 dard 19.0 0 1.83 - 31.0 2.5% dry	21 19.0 0 1.79 - 35.0 2.5% dry	22 19.0 0 1.80 - 29.0 2.5% dry
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	 wet t/m³ t/m³ %	17 19.0 0 1.72 - 39.0 0.5% dry	18 19.0 0 1.72 - 34.5 1.5% dry	19 Star 0 1.88 - 28.5 0.5% dry	20 dard 19.0 0 1.83 - 31.0 2.5% dry	21 19.0 0 1.79 - 35.0 2.5% dry	22 19.0 0 1.80 - 29.0 2.5% dry

No 17 - 22 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTECI	HNICAL SERVICES	Job No Report No	18094 18094/R005
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	25/07/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	CGS
Project	AQUAREVO - STAGE 6	Date tested	20/02/18
Location	LYNDHURST	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 08:17

Test procedure AS 1289.2.1.1 &	5.8.1						
Test No		23	24	-	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1				
Approximate depth below FSL							
Measurement depth	тт	175	175	-	-	-	-
Field wet density	t∕m³	1.73	1.74	-	-	-	-
Field moisture content	%	21.5	23.4	-	-	-	-
Test procedure AS 1289.5.7.1		23	24		-	-	<u> </u>
Compactive effort		20	27	Star	ndard		
Oversize rock retained on sieve	mm	19.0	19.0	-	-	-	-
Percent of oversize material	wet	0	0	-	-	-	-
Peak Converted Wet Density	t/m³	1.81	1.80	-	-	-	-

Optimum Moisture Content % 19.5 21.0 Moisture Variation From 2.0% 2.5% _ _ **Optimum Moisture Content** wet wet

-

t/m³

Density Ratio (R _{HD})	%	96.0	96.5	-	-	-	-

-

-

-

-

-

-

-

-

Material description

No 23 - 24 Clay Fill

Adjusted Peak Converted Wet Density

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

-

-

_

CIVIL GEOTECH	INICAL SERVICES	Job No Report No	18094 18094/R006
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	27/09/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KS
Project	AQUAREVO - STAGE 6	Date tested	21/02/18
Location	LYNDHURST	Checked by	JHF
		· · · ·	

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 10:05

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		25	26	27	28	29	30
Location		REFER TO FIGURE 1					
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.76	1.75	1.69	1.84	1.73	1.78
Field moisture content	%	31.0	29.2	25.1	37.2	26.3	33.8
Test procedure AS 1289.5.7.1							
Test No		25	26	27	28	29	30
Compactive effort				Star	ndard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.74	1.79	1.71	1.83	1.77	1.80
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	29.5	27.5	24.0	35.5	24.5	32.5
Moisture Variation From		2.5%	2.5%	2.0%	2.0%	2.5%	2.0%
Optimum Moisture Content		wet	wet	wet	wet	wet	wet
							1
Density Ratio (R _{HD})	%	101.0	98.5	99.0	100.5	97.5	98.5
Material description No 25 - 30 Clay Fill	%	101.0	98.5	99.0	100.5	97.5	98.5

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	18094 18094/R007
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	27/09/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KS
Project	AQUAREVO - STAGE 6	Date tested	21/02/18
Location	LYNDHURST	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 10:29

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		31	32	33	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.77	1.72	1.79	-	-	-
Field moisture content	%	17.0	37.3	29.5	-	-	-

Test procedure AS 1289.5.7.1

		Star	ndard		
n 19.0	19.0	19.0	-	-	-
t 0	0	0	-	-	-
³ 1.76	1.79	1.77	-	-	-
3 _	-	-	-	-	-
15.0	35.5	27.5	-	-	-
	m 19.0 et 0 p ³ 1.76 p ³ - 6 15.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Moisture Variation From	2.0%	2.0%	2.0%	-	-	-
Optimum Moisture Content	wet	wet	wet			

Density Ratio (R _{HD})	%	100.5	96.0	101.0	-	-	-

Material description

No 31 - 33 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTECI	INICAL SERVICES	Job No Report No	18094 18094/R008
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	02/10/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KC
Project	AQUAREVO - STAGE 6	Date tested	23/02/18
Location	LYNDHURST	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 09:14

Test procedure AS 1289.2.1.1 & 5.8.1

	34	35	36	37	-	-
	REFER	REFER	REFER	REFER		
	то	то	то	то		
	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1		
тт	175	175	175	175	-	-
t∕m³	1.90	1.92	1.98	1.85	-	-
%	28.3	29.1	32.7	31.0	-	-
	34	35	36	37	-	-
			Star	Idard		
тт	19.0	19.0	19.0	19.0	-	-
wet	0	0	0	0	-	-
t∕m³	1.98	2.00	2.05	1.92	-	-
t∕m³	-	-	-	-	-	-
%	26.0	27.0	28.5	28.5	-	-
	0.00/	2.09/	2.00/	2 50/	_	-
	2.0%	Z.U%	2.0%	2.3%	-	
	2.0% wet	2.0%	2.0% wet	2.5% wet	-	
	2.0% wet	vet	vet	vet	_	
	mm t/m³ % mm wet t/m³ t/m³ %	REFER TO FIGURE 1 mm 175 t/m³ 1.90 % 28.3 mm 19.0 wet 0 t/m³ 1.98 t/m³ - % 26.0	$\begin{array}{c c} REFER \\ TO \\ FIGURE 1 \\ \hline \\ \\ FIGURE 1 \\ \hline \\ \\ FIGURE 1 \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

CIVIL GEOTECH	INICAL SERVICES	Job No Report No	18094 18094/R009
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	26/10/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KS
Project	AQUAREVO - STAGE 6	Date tested	24/02/18
Location	LYNDHURST	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 09:24

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		38	39	40	41	42	43
Location		REFER TO FIGURE 1					
Approximate donth below ESI							
Approximate depth below FSL	mm	175	175	175	175	175	175
Field wet depaity	1/m3	173	173	1 02	1 95	175	173
Field wei density	0/	1.70	1.74	1.03	1.00	1.70	1.73
Test procedure AS 1289.5.7.1							
Test No		38	39	40	41	42	43
Compactive effort				Stan	dard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m ³	1.81	1.78	1.89	1.88	1.80	1.76
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-
Optimum Moisture Content	%	33.5	25.0	33.0	29.0	28.5	24.5
Moisture Variation From Optimum Moisture Content		2.5% wet	2.5% wet	1.5% wet	2.0% wet	2.0% wet	2.0% wet
Density Ratio (R _{HD})	%	98.5	98.0	97.0	98.5	98.0	98.5
Material description No 38 - 43 Clay Fill							

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	18094 18094/R010
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	19/10/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	KS
Project	AQUAREVO - STAGE 6	Date tested	28/02/18
Location	LYNDHURST	Checked by	JHF

Feature

EARTHWORKS

Layer thickness

200 mm

Time: 07:58

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		44	45	46	47	48	49
Location		REFER	REFER	REFER	REFER	REFER	REFER
		TO	TO	то	TO	TO	TO
		FIGURE 1		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.84	1.76	1.80	1.76	1.77	1.76
Field moisture content	%	33.6	31.1	32.3	25.7	19.9	21.5
Test procedure AS 1289.5.7.1		•					
Test No		44	45	46	47	48	49
Compactive effort				Star	dard		
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.87	1.78	1.83	1.79	1.80	1.79
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	31.0	30.0	30.5	24.0	18.0	19.5
Moisture Variation From		2.5%	2.0%	2.0%	2.0%	2.0%	2.0%
Optimum Moisture Content		wet	wet	wet	wet	wet	wet
Density Ratio (R _{HD})	%	98.5	99.0	98.5	98.5	98.5	98.0
Material description							
No 44 - 49 Clay Fill							

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

AVRLOT HILF V1.10 MAR 13

				•	Job No Report No Date Issued	18094 18094/R011 23/10/2019
≀S F	PTY LTD (CA	MPBELLFIE	LD)		Tested by Date tested Checked by	KS 19/10/19 JHF
	Lay	er thickness	200	mm	Time.	07:36
	50	51	52	53	-	-
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	1	
m	175	175	175	175	-	-
n³	1.80	1.85	1.83	1.84	-	-
	50	51	52	53	-	-
$ \rightarrow $			Stan	dard		
т	19.0	19.0	19.0	19.0	-	-
'et	0	0	0	0	-	-
n^3	1.88	1.89	1.90	1.92	-	-
n³ %	- 27.5	- 24.0	- 26.0	- 27.5	-	-
	1.5%	2.5%	2.5%	2.0%	-	-
	wei	wei	wei	wei		· · · · ·
4						
	m m ³ %	Lay 50 REFER TO FIGURE 1 175 n ³ 1.80 29.1 50 m 19.0 ret 0 n ³ 1.88 n ³ - 27.5	Layer thickness 50 51 REFER REFER TO FIGURE 1 FIGURE 1 FIGURE 1 m 175 175 n^3 1.80 1.85 29.1 26.6 m 19.0 19.0 m 19.0 19.0 m^3 1.88 1.89 n^3 - - 27.5 24.0	Layer thickness 200 50 51 52 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 m 175 175 m 1.80 1.85 1.83 29.1 26.6 28.4 50 51 52 m 19.0 19.0 m 19.0 19.0 m 1.88 1.89 1.90 m 27.5 24.0 26.0	Layer thickness 200 mm 50 51 52 53 REFER TO FIGURE 1 m 175 175 175 175 n³ 1.80 1.85 1.83 1.84 29.1 26.6 28.4 29.4 50 51 52 53 Standard m 19.0 19.0 19.0 n³ 1.88 1.89 1.90 1.92 n³ - - - - 27.5 24.0 26.0 27.5 26.0	Date tested Checked by Layer thickness 200 mm Time: 50 51 52 53 - REFER TO FIGURE 1 <

5 Juten

CIVIL GEOTECHNICAL SERVICES 6 - 8 Rose Avenue, Crovdon 3136						18094 18094/R012 15/11/2019
ClientWINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)ProjectAQUAREVO - STAGE 6LocationLYNDHURST					Tested by Date tested Checked by	KS 01/11/19 JHF
	Lay	er thickness	200	mm	Time	: 08:27
3.1						
	54	55	56	57	-	-
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE	1	
mm	175	175	175	175	-	-
t∕m³	1.83	1.81	1.80	1.83	-	-
70	50.5	21.5	50.2	20.7		
	54	55	56	57 dord	-	-
	10.0	10.0	5tan			T
 wot	19.0	19.0	19.0	19.0	-	-
t/m ³	1.89	1.85	1.81	1.82		
t/m ³	-	-	-	-	-	- 1
%	28.5	24.5	34.0	28.5	-	-
	1.5%	2.5%	1.0%	0.0%	-	
			dnu			
	wet	wet	ary			•
	3.1 3.1 <u>mm</u> t/m ³ % <u>mm</u> wet t/m ³ t/m ³ %	3 Lay 3.1 54 REFER TO FIGURE 1 mm 175 t/m³ 1.83 % 30.3 54 mm 19.0 wet 0 t/m³ 1.89 t/m³ - % 28.5	S Layer thickness Layer thickness Layer thickness Layer thickness REFER REFER REFER TO FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 t/m³ 1.83 1.81 % 30.3 27.3 mm 19.0 19.0 wet 0 0 t/m³ 1.89 1.85 t/m³ - - % 28.5 24.5	Eayer thickness 200 3.1 54 55 56 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 REFER TO FIGURE 1 mm 175 175 175 t/m³ 1.83 1.81 1.80 % 30.3 27.3 33.2 54 55 56 mm 19.0 19.0 wet 0 0 t/m³ 1.89 1.85 t/m³ - - % 28.5 24.5 34.0	3 Layer thickness 200 mm 3.1 54 55 56 57 REFER REFER REFER REFER TO FIGURE 1 FIGURE 1 FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 175 175 t/m³ 1.83 1.81 1.80 1.83 % 30.3 27.3 33.2 28.7	Date tested Checked by Layer thickness 200 mm Time 3.1 54 55 56 57 - REFER TO FIGURE 1 REFER TO FIGURE 1

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Jute 0