

LOCALITY PLAN MELWAYS REF: 468 D5

Principal

Leopold Developments Pty Ltd Level 1, 6 Riverside Quay Southbank, Victoria 3006

ESTUARY

Stage 2A

City of Greater Geelong

Drawing Index

	-
0250EHL-02A- 01	Locality Plan
0250EHL-02A- 02	General Notes
0250EHL-02A- 03	Layout Plan
0250EHL-02A- 04	Services Layout I
0250EHL-02A- 05	Intersection Deta
0250EHL-02A- 06	Lip Profiles
0250EHL-02A- 07	Setout Informatio
0250EHL-02A- 08	Longitudinal Sect
0250EHL-02A- 09	Longitudinal Sect
0250EHL-02A- 10	Longitudinal Sect
0250EHL-02A- 11	Cross Sections -
0250EHL-02A- 12	Cross Sections -
0250EHL-02A- 13	Cross Sections -
0250EHL-02A- 14	Cross Sections -
0250EHL-02A- 15	Cross Sections -
0250EHL-02A- 16	Cross Sections -
0250EHL-02A- 17	Cross Sections -
0250EHL-02A- 18	Drainage Longitu
0250EHL-02A- 19	Drainage Longitu
0250EHL-02A- 20	Drainage Longitu
0250EHL-02A- 21	Drainage Longitu
0250EHL-02A- 22	Standard Details
0250EHL-02A- 23	Subdivision Seto

Level 1, 47 Pakington Street, Geelong West, VIC, 3218 Tel: +61 3 5228 3100 Fax: +61 3 5228 3199 A.B.N. 99 124 206 819

- Plan ail Plan
- ion Plan ctions - 1 ctions - 2 ctions - 3 - Hillclimb Drive - 1 - Hillclimb Drive - 2 - Hillclimb Drive - 3 - Shoaling Drive - 3 - Shoaling Drive - 1 - Shoaling Drive - 2 - Masimo Road - Paraffin Drive cudinal Sections - 1 cudinal Sections - 3 cudinal Sections - 3

out Plan

Standard Construction Notes

GENERAL

- 1.1 **Drawings** - The drawings are to be read in conjunction with the contract specification and the responsible Authorities standard drawings and current specifications for Roadworks and Drainage. Any observed discrepancy to be referred to the Superintendent prior to start of work.
- 1.2 **Responsible Authority Documentation Availability** - A set of the respective responsible Authority standard construction documentation including drawings and specification/s are to be provided by the Contractor and made available on-site for the duration of the construction period.
- **Conformity with Drawings** All works are to be finished in conformity with the 1.3 lines, grades, thicknesses and cross sections shown in the drawings.
- **Materials and Workmanship** Materials and workmanship to comply with responsible Authority specifications and relevant SAA Codes.
- **Tolerances** Works are to be constructed in compliance with tolerances 1.5 specified by the relevant responsible Authorities.
- Minimum Standards The standards of work and materials stated in the 1.6 drawings and specification are the minimum acceptable irrespective of relevant responsible Authority minimum standards.
- Sewer/Water Supply Construction notes specific to sewer and water supply 1.7 asset construction are incorporated in the drawings approved by the Water Company as attached hereto.

2. **EXISTING CONDITIONS**

- **Discrepancy with Drawings** Any discrepancy observed/identified between 2.1 the drawings and existing conditions and site features are to be referred to the Superintendent prior to start of any related work.
- Municipal Assets & Infrastructure The condition of existing Council assets 2.2 potentially affected by the works is to be assessed by a joint site inspection with Council Officers prior to the start of works. Asset conditions are to be recorded and witnessed by Council and the Contractor. The Contractor is to arrange and record site inspections and is liable for all rectification/reinstatement costs for damage to existing assets.

Utility Services - The locations of existing utility services, as shown in the 2.3 drawings, are not guaranteed. Exact service locations are to be proven prior to start of works. Service location works are to comply with the requirements of the relevant responsible Authority. The Contractor is liable for rectification/reinstatement costs for damage to existing utility services.

NOTIFICATIONS 3.

- **Council** Minimum notification periods are: 3.1
- two (2) days written notice of intention to start works (a)
- two (2) days notice to inspect condition of existing Council assets (b)
- twenty four (24) hours notice for weekend work (c)
- twenty four (24) hours notice for: (d)
 - inspection of drainage works - inspection of sub-soil drains
 - proof roll of prepared sub-grade or constructed pavement
 - inspection of prepared base for concrete works
 - other works as stated in the drawings or specified

Or as otherwise agreed with Council Officers.

Property Owners/Tenants - Seven (7) days written notice to property 3.2 owners/tenants affected by the works.

OCCUPATION OF PUBLIC ROADS 4

All roadworks signage to comply with VicRoads Worksite Traffic Management Code incorporating AS 1742.3.

- **Roads under VicRoads jurisdiction** The Contractor is to arrange VicRoads consent via "Application for Consent - Works within Road Reserves" (refer VicRoads web site).
- **Roads under Council control** The Contractor is to arrange and acquire 4.2 requisite Road Closure Permits via Council's Traffic Officer.

estuary
leopold

Principal	Leopold Developments Pty Ltd
	Level 1, 6 Riverside Quay

Southbank, Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

5. SET OUT

- Survey Stations and Reference Marks The locations of survey s 5.1 reference marks are to be verified prior to start of works.
- Road Chainages Road chainages as shown in the drawings are to 5.2 centreline, unless otherwise stated.
- 5.3 Kerb & Channel - Kerb and channel radii and levels relate to edge unless otherwise stated.
- 5.4 **Drainage Pits** The locations and orientation of drainage pits are to accurately set out from co ordinates and/or offsets as stated.
- 5.5 Pipe Drains Drainage lines are to be accurately set out from coord and/or offsets as stated. Further to Standard Note 5.4 drainage lines to be accurately set out to ensure that the outlet pipe is aligned direct the inlet pipe (where deflection angles are 450 or less) or as otherwi the drawings or directed.

TOPSOIL 6.

- 6.1 Stripping Limits - Clearing and stripping of topsoil to be restricted be excavated/filled as stated in the drawings or limits as otherwise d the Superintendent.
- 6.2 Surplus Material Surplus topsoil must be re-used on-site unless o stated in the drawings or directed by the Superintendent.

EXISTING VEGETATION 7.

All existing trees and significant vegetation within and external to the are to be retained, preserved and protected unless otherwise stated drawings or directed by the Superintendent.

- EXCAVATION/TRENCHING
- 8.1 **Trenching** Trenching operations exceeding 1.5 metres depth are with the provisions of the Mines (Trenches) Regulations 1982.
- 8.2 Work close to Trees and Vegetation Excavation work within the trees is not to be performed unless otherwise stated in the drawings approved by the Superintendent.
- **Unstable Sub-Grade** Unstable sub-grade/"soft spots" to be excavation 8.3 sound proof-rolled base and backfilled with material approved by Con
- 9. SOIL EROSION

The Contractor must install necessary protection works to effectively and limit soil erosion within the worksite. Works to include, but are ne

- Silt Fences downstream of all exposed areas. 9.1
- 9.2 Silt Barriers - upstream of all pits
- 10. DRAINAGE WORK
- 10.1 **Existing Drains** The location of existing drainage assets to be veri start of works.
- 10.2 **Pipe Class** Pipes to be, unless otherwise stated in the drawings:
- Roads & Reserves Class 2 Rubber Ring Jointed RCP (a) Easements - Rubber Ring Jointed RCP/FRP or Sewer Class Solvent (b) UPVC
- 10.3 **Pit Covers** Pit covers are to be placed to match actual finished sur profiles - level and cross fall - of adjacent structures/surfaces. Finishe levels stated in the drawings are indicative, for depth range purposes not to be used as the basis for setting final pit cover levels
- 10.4 Pit Construction Precast standard pits are to be installed. Cast in standard pits are only to be constructed where approved by the Superintendent. All sumps in precast concrete pits are to be infilled v concrete flush to the inlet level of the outlet pipe unless otherwise ap the superintendent.
- 10.5 Sub-Soil Drains
- (a) Entry to pits to be trimmed flush with inner wall and effectively morta through the full pit wall thickness.

	(b)	Details of granular filter material including source to be submitted to the Superintendent prior to start of sub-soil drainage works.	
tations and	11.	BACKFILL MATERIAL	15.3
o road	11.1	Trenches under all pavement, edgings/kerb sections & Nature Strips - 20mm Class 3 Fine Crushed Rock or other material as approved by Council.	16.
of channel,	11.2	Allotments/Reserves/ - Selected best quality excavated in-situ material or other material as approved by Council.	16.1
	12.	COMPACTION STANDARDS	16.2
be		Compaction standards are to be checked and proven in accordance with the requirements of AS 1289. Where unspecified by the responsible Authority, the	17.
linates s at pits are ctly opposite	12.1	following minimum standards will apply: Structural Fill	17.1
ise stated in	(a) (b) (c)	Fill base - top 150mm 95% standard compaction Fill zone - 95% standard compaction Under road pavement - zone less than 450mm under road pavement surface 98% standard compaction	17.2 17.3
to areas to lirected by	12.2	Road Pavement	17 /
otherwise	(a) (b)	Road sub-grade - top 150mm 98% standard compaction Pavement materials - 98% modified compaction	17.4
	12.3	Trench Backfill	17.5
e worksite	(a)	Granular under all pavement & edgings/kerb sections - 98% modified compaction	17.6
in the	(b) (c)	Granular behind kerbing - 95% modified compaction Earth around structures - 95% standard compaction	18.
	13.	CONCRETE WORK	
to comply	13.1	Minimum Strength - Concrete for drainage pits to have a minimum compressive strength of 32 MPa at 28 days.	18.1
drip line of or		- Concrete for all other applications to have a minimum compressive strength of 25 MPa at 28 days	18.2
ated to a ouncil.	13.2	Bar Chairs - All reinforcement in footpaths, vehicle crossings and roads to be supported by appropriately sized bar chairs.	18.3
	13.3	Slump - Concrete to have 75mm maximum slump.	(a) (b)
/ manage ot limited to:	13.4	Kerb Cement Content - Concrete for kerb extrusion machines to have a minimum cement content of 280 kg/m3.	(c)
	13.5	Services Distribution Mains & Conduits - Mains and conduits are to be installed prior to kerb section construction works.	18.4
ified prior to	13.6	Footpaths - All footpaths are to be a minimum of 125mm thick with F62 reinforcement, bedded on min of 75mm compacted Class 3 FCR. Bedding to extend 100mm beyond the edges of the footpath. Contraction joints to be constructed at 12.5m intervals. Class 4 FCR is to be used where filling is required under footpath Class 3 FCR bedding material.	10 5
	13.7	Continuous Kerb - To allow for a continuous concrete kerb and channel pour the "Gatic" HD concrete surround is to be in place prior to the pour commencing. If the pit surrounds are not in place then the initial kerb and channel pour is to stop one metre either side of pit.	18.5
t Cement	14.	ROAD PAVEMENT WORK	18.6
face ed surface	14.1	Pavement Composition - The minimum standard of pavement composition is stated in the drawings for the respective road sections.	19.
s, and are	14.2	Road surfacing - Road surfacing must not be performed until all other works have been completed.	
n-situ	15.	IDENTIFICATION MARKING	19.1
with oproved by		All identification marking figures are to be a minimum of 50mm high.	19.2
	15.1	Conduits - Letter "W", "G" "E" or "T" for water, gas, electricity or telecommunications conduit to be stamped into face of kerb sections at frontage of lot served.	19.3
ared in place	15.2	House Drain Connections - Letter "H" to be stamped into face of kerb sections	(a) (b)
s - use only dir	nensions	stated.	

DRAWING NOTES

Do not scale drawings - use only dimensions stated.

Dimensions - Dimensions are in metres [m] unless otherwise stated.

3. Australian Height Datum - Reduced levels are to Australian Height (AHD) unless otherwise stated.

Scale@A1

C. Barker Designed Drawn Checked Approved

opposite street drain connection point

Lot Nos. - Lot Nos. to be stenciled in white paint on face of kerb sections at lot frontages.

TESTING

Specified Testing - Testing will be conducted in compliance with specified requirements. The Contractor is liable for all costs.

Proof-Rolling - Pneumatic tyred plant minimum weight 20 tonne with minimum ground contact pressure 450 kPa per tyre.

EXPOSED SURFACES RESTORATION

Topsoiling - All exposed residual surface areas at completion of civil works to be topsoiled with 100mm depth of best available material.

Allotments/Reserves - Allotments and reserves are to be evenly graded at a minimum gradient of 1 in 100 to their nominated drainage connection points.

Nature Strips - Nature strip surfaces are to be trimmed to grade between adjacent surfaces. Top-soiling and compaction operations are to ensure there is no later settlement/subsidence.

Top-Dressing - Undisturbed grassed areas are to be top-dressed and evenly graded as directed by the Superintendent.

Hydroseeding - At completion of the above works all prepared exposed surfaces are to be well watered and hydroseeded.

Batter Slopes - Batter slopes shall be a maximum of 1 in 5 for fill and 1 in 3 for cut unless otherwise shown.

FINAL WORKS PRESENTATION

At Practical Completion the following minimum standards of presentation will apply:

Roads/Paved Areas - All roads and paved areas are to be swept/washed down to produce clean surfaces free of all deleterious materials.

Pipe Systems - All pipe systems are to be flushed and cleared of all accumulated debris and deleterious materials

Site - The site is to be prepared to a state acceptable for presentation to the public for sale purposes and is to be in a condition satisfactory to the Superintendent with completion of, at least, the following activities: all incidental and minor works

site clean up operations

site cleared of all facilities, temporary structures, plant, litter, surplus materials, etc. that are to be removed off-site.

Reserve Frontages - Round topped treated pipe bollards (0.6m high) are to be placed across reserve frontages at 1.5m centres. A demountable section for vehicle access consisting of an appropriate length of 50mm diameter (2.3mm wall thickness) galvanised water pipe, short section of chain (3 links) welded to each end. Two galvanised steel bollards - one each side of the entry, with one end to have a D20 padlock, which locks in to a link, which has been welded onto the bollard. Unless otherwise stated on plans.

Street Signs - Street signs are to be located as indicated on the plans and installed in accordance with Vicroads Traffic Engineering Manual Volume 2. Mounting height is to be to the underside of the sign and is to be a minimum of 2.1m and maximum of 3.0m

No Through Road - No through road signs are to be install below the street sign where applicable.

MAINTENANCE WORKS

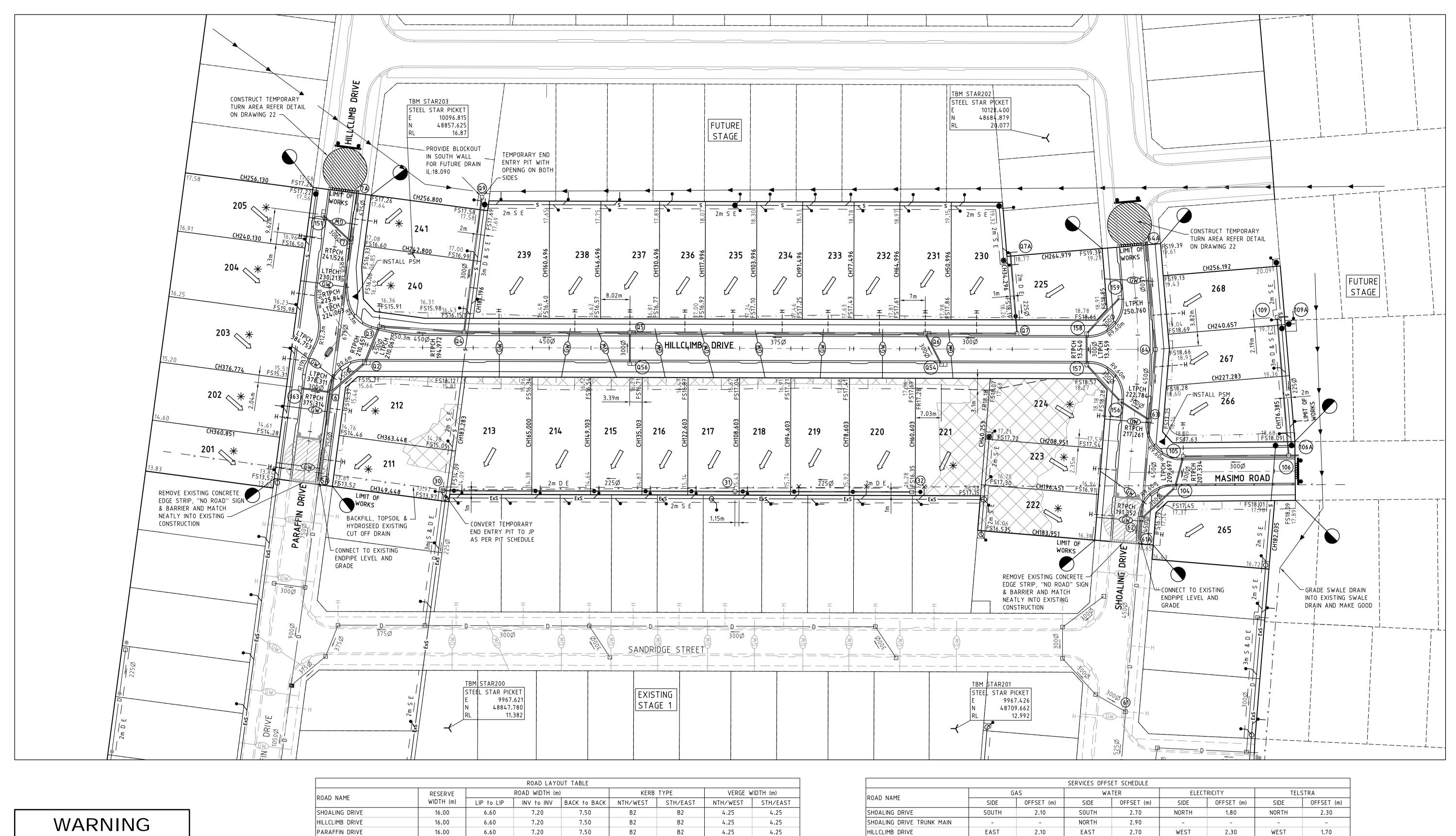
The Contractor must responsively repair/remediate defective works as directed during the maintenance period.

Council Assets - for Maintenance Period of 3 months

Water Company Assets - for Defects Liability Period of 12 months and Maintenance Period of 2 years

Inspection & General Maintenance Activities - the Contractor must undertake regular site inspections of all completed works. Special attention must be given to the adequacy of the following soil protection works:

Silt fences Silt barriers


ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage General Notes

Drawing No. 0250EHL-02A-02 Sheet No. 2 of 23

Rev B

M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES ARE APPROXIMATE ONLY AND THEIR EXACT POSITION SHOULD BE PROVEN ON SITE. NO GUARANTEE IS GIVEN THAT ALL EXISTING SERVICES ARE SHOWN.

Е	DRIVEWAY LOCATION AMENDED FOR LOT 267	15.06.10	
D	MINOR AMENDMENTS	25.5.10	
C	VEHICLE ACCESS LOCATION & DRAINAGE AMENDED	19.05.10	
В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

MASIMO ROAD

16.00

6.60

LEGEND		——————————————————————————————————————	Existing Electricity (Undergrou
——— E ———	Electricity (Underground)		Existing Electricity (Overhead)
G	Gas	——————————————————————————————————————	Existing Gas
T	Telstra	———— Ex T ———	Existing Telstra
• W	Water	— Ex W —	Existing Water
	Stormwater Drain, Pit and Property Inlet	———— Ex D ———	Existing Stormwater Drain
b	Swale Drain	<u>Ө</u> — Ех S — —	Existing Sewer
•S•	Sewer, Maintenance Structures	— — — H	Existing House Drain
н	and Property Connection House Drain	•	Existing Tree to Remain
GW	Gas & Water Conduits	\bigotimes	Existing Tree to be Removed
	Tactile Paver - Directional Tactile Paver - Hazard	>>	Existing Swale Drain

Principal Leopold Developments Pty Ltd Level 1, 6 Riverside Quay Southbank, Victoria 3006

ROAD LAYOUT TABLE					
AD WIDTH (m)		KERB	TYPE	VERGE W	/IDTH (m)
NV to INV	BACK to BACK	NTH/WEST	STH/EAST	NTH/WEST	STH/EAST
7.20	7.50	B2	B2	4.25	4.25
7.20	7.50	B2	B2	4.25	4.25
7.20	7.50	B2	B2	4.25	4.25
7.20	7.50	B2	B2	4.25	4.25

			SERVICES OFFS	ET SCHEDULE	
	G	AS	WATER		
ROAD NAME	SIDE	OFFSET (m)	SIDE	OFFSET (m	
SHOALING DRIVE	SOUTH	2.10	SOUTH	2.70	
SHOALING DRIVE TRUNK MAIN	-	-	NORTH	2.90	
HILLCLIMB DRIVE	EAST	2.10	EAST	2.70	
PARAFFIN DRIVE	SOUTH	2.10	SOUTH	2.70	
MASIMO ROAD	EAST	2.10	EAST	2.70	

141.34 Existing Surface Level ound) FS140.35 Finished Building Line Level FR157.40 Finished Ridge Line Level TW159.30 Top of Retaining Wall BW159.30 Bottom of Retaining Wall Retaining Wall Intersection Threshold Treatment Structural Fill > 200mm Deep Ex. Structural Fill > 200mm Deep \rightarrow Proposed Driveway

Allotment to be graded evenly in direction of fall to levels indicated Direction of Fall Overland Flow Permanent Survey Mark Temporary Bench Mark \perp Concrete Edge Strip with Subsoil Drain underneath "No Road "

sign and Barrier — — Zero Lot Lines

Limit of Works

10 20

1:500

Scale@A1

NORTH

WEST

Designed Drawn Checked Approved

C. Barker M. Wilks C. Birkett J. Golden

November 2009 November 2009 November 2009 November 2009

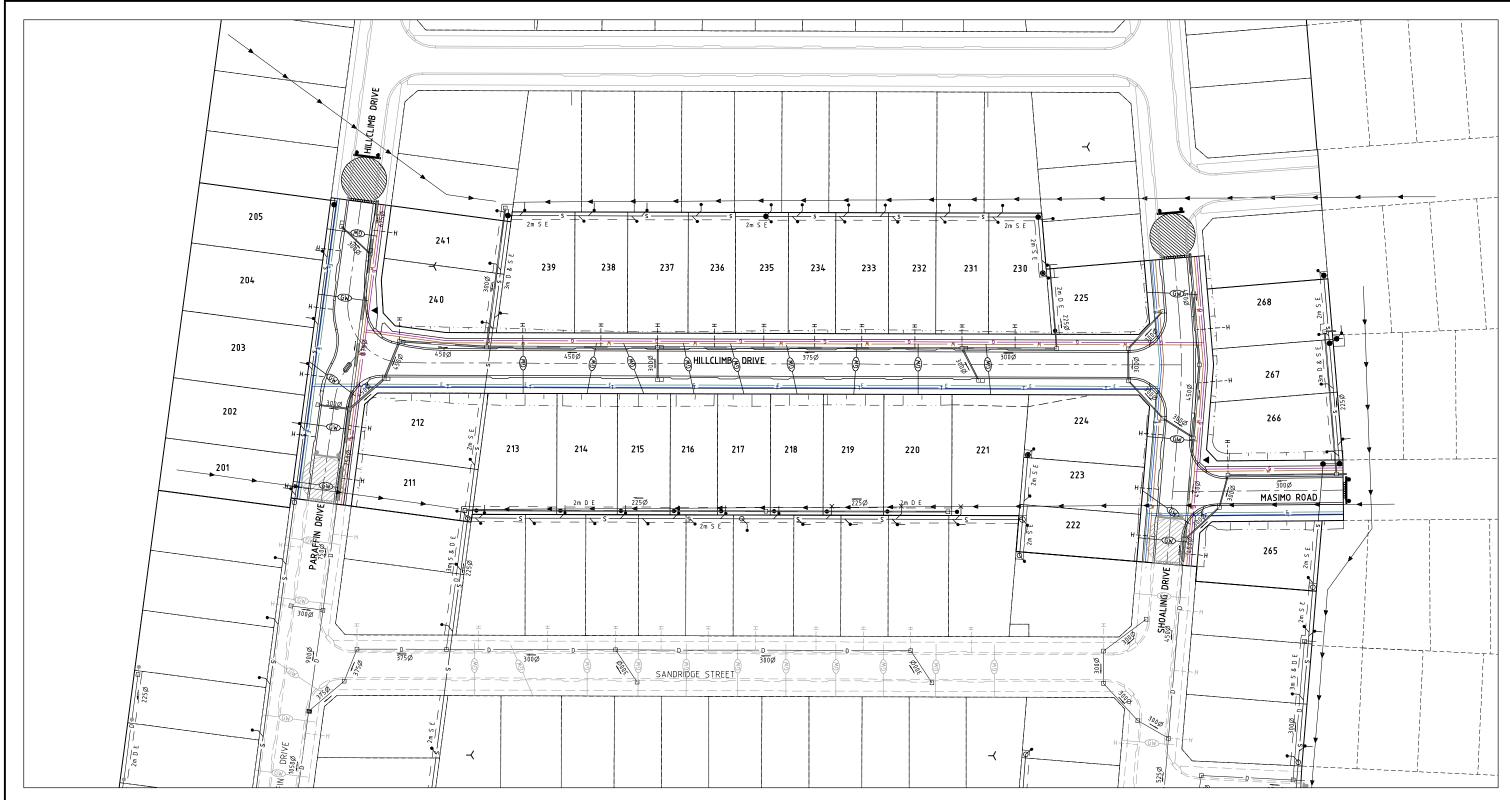
2.30

2.30

ESTUARY

NORTH

WEST


Stage 2A City of Greater Geelong Roadworks and Drainage Layout Plan

1.70

1.70

Drawing No. 0250EHL-02A-03 Sheet No. 3 of 23

Rev E

			ROAD LAYO	DUT TABLE				
DOAD NAME	RESERVE	ROAD WIDTH (m)			KERB TYPE		VERGE WIDTH (m)	
ROAD NAME	WIDTH (m)	LIP to LIP	INV to INV	BACK to BACK	NTH/WEST	STH/EAST	NTH/WEST	STH/EAST
SHOALING DRIVE	16.00	6.60	7.20	7.50	B2	B2	4.25	4.25
HILLCLIMB DRIVE	16.00	6.60	7.20	7.50	B2	B2	4.25	4.25
PARAFFIN DRIVE	16.00	6.60	7.20	7.50	B 2	B2	4.25	4.25
MASIMO ROAD	16.00	6.60	7.20	7.50	B2	B2	4.25	4.25

			SERVICES OFF	SET SCHEDULE					
	(GAS		WATER		ELECTRICITY		TELSTRA	
ROAD NAME	SIDE	OFFSET (m)	SIDE	OFFSET (m)	SIDE	OFFSET (m)	SIDE	OFFSET (m)	
SHOALING DRIVE	SOUTH	2.10	SOUTH	2.70	NORTH	1.80	NORTH	2.30	
SHOALING DRIVE TRUNK MAIN	-	-	NORTH	2.90	-	-	-	-	
HILLCLIMB DRIVE	EAST	2.10	EAST	2.70	WEST	2.30	WEST	1.70	
PARAFFIN DRIVE	SOUTH	2.10	SOUTH	2.70	NORTH	2.30	NORTH	1.70	
MASIMO ROAD	EAST	2.10	EAST	2.70	WEST	2.30	WEST	1.70	

WARNING BEWARE OF UNDERGROUND SERVICES THE LOCATIONS OF UNDERGROUND SERVICES ARE APPROXIMATE ONLY AND THEIR EXACT POSITION SHOULD BE PROVEN ON SITE. NO GUARANTEE IS GIVEN THAT ALL EXISTING SERVICES ARE SHOWN.

e	estuary leopold
Principal	Leopold Developments Pty Ltd

Southbank, Victoria 3006

С	MINOR AMENDMENTS	25.5.10	
В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RI	EVISION	DATE	APP'D

LEGEND — F — Electricity (Under G Gas G T Gas T Gas • –œ Gas & Water Conduits Tactile Paver - Directional Tactile Paver - Hazard

------ Ex E ------ Existing Electricity (Underground) ----- Ex G ------ Existing Gas Existing Gas Existing Telstra Existing Welser Existing Water Existing Stormwa
 G
 Ex s
 Existing Sewer

 ----H
 Existing House Drain
 \odot Existing Tree to Remain \bigotimes Existing Tree to be Removed -> ------> Existing Swale Drain

Existing Surface Level F5140.35 Finished Building Line Level FR157.40 Finished Ridge Line Level TW159.30 Top of Retaining Wall BW159.30 Bottom of Re Retaining Wa Intersection Structural Fill Ex. Structural Fill > 2

141.34

Retaining Wall		Permanent Survey Mark
Vall	Y	Temporary Bench Mark
Threshold Treatment		Concrete Edge Strip with Subsoil Drain underneath "No Road "
Fill > 200mm Deep		sign and Barrier
ral Fill > 200mm Deep		Zero Lot Lines

Allotment to be graded evenly in direction of fall to levels indicated

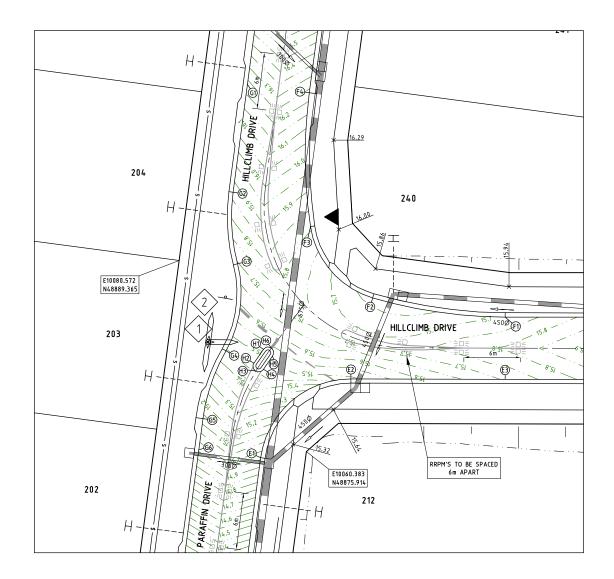
Direction of Fall

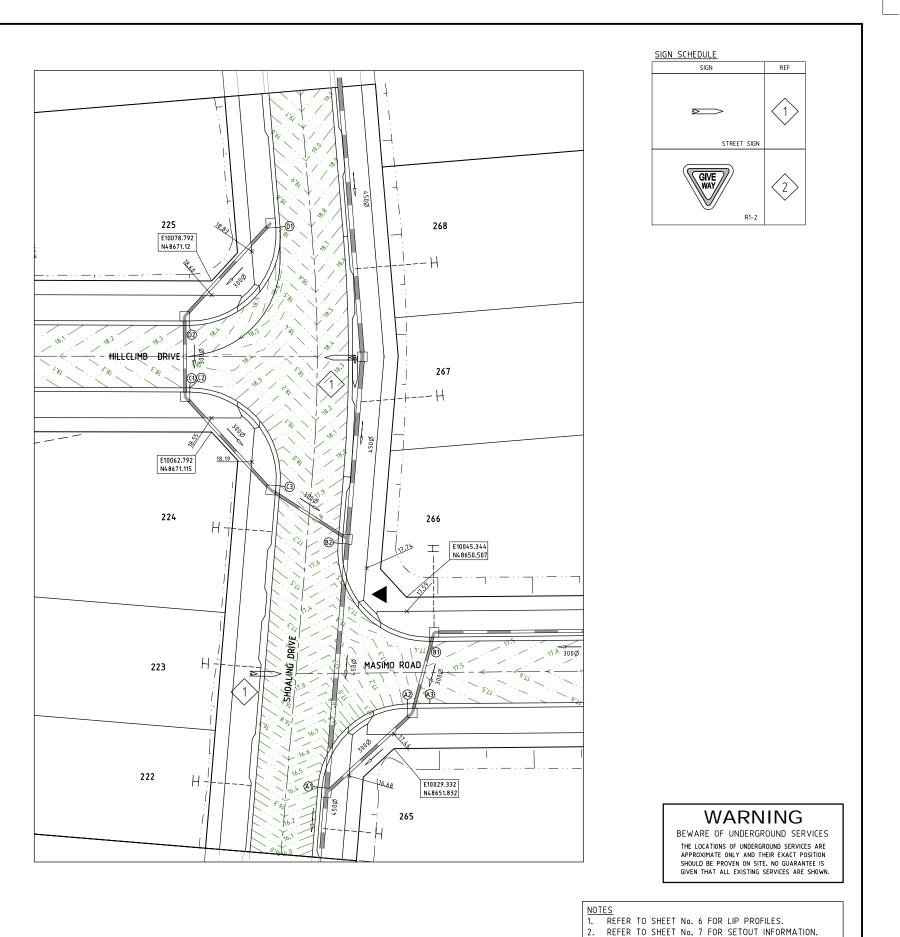
Overland Flow

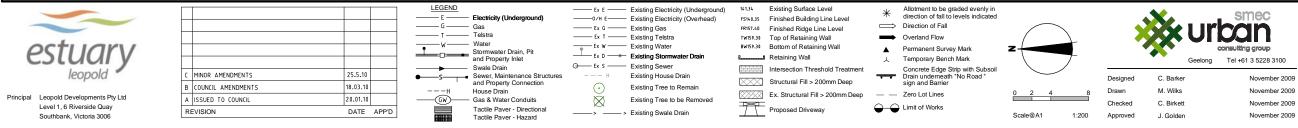
 $\bigcirc ~ \bigcirc$ Limit of Works

2		\$	X
\sim		Designed	C. Bark
0 5 10	20	Drawn	M. Wilk
		Checked	C. Birk
Scale@A1	1:500	Approved	J. Gold

November 2009

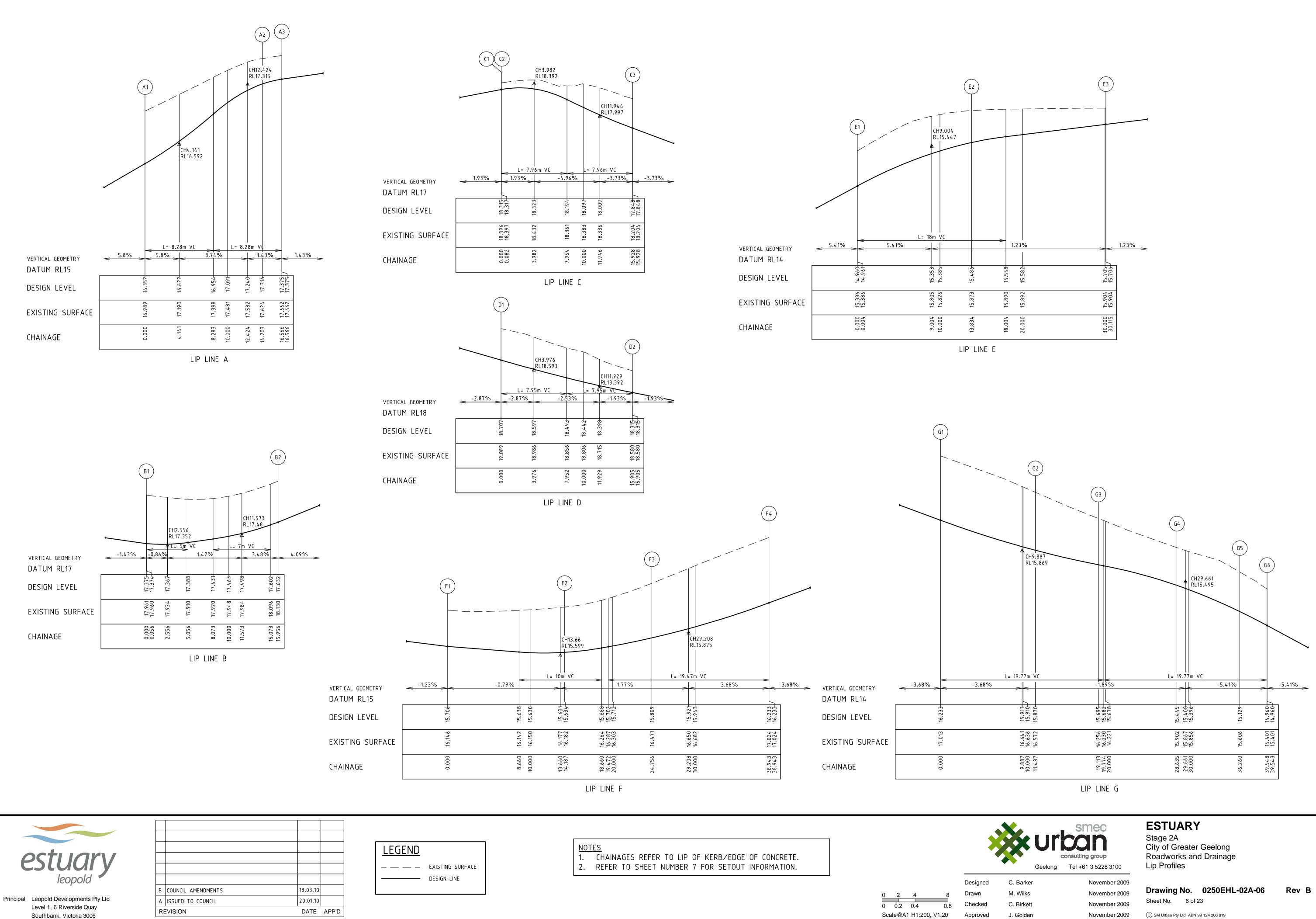

November 2009


ESTUARY


Stage 2A City of Greater Geelong Roadworks and Drainage Services Layout Plan

Drawing No. 0250EHL-02A-04 Sheet No. 4 of 23

Rev C


ESTUARY Stage 2A

November 2009 November 2009 November 2009

City of Greater Geelong Roadworks and Drainage Intersection Detail Plan

Drawing No. 0250EHL-02A-05 Sheet No. 5 of 23

Rev C

November 2009

HILLCLIMB DRIVE DESIGN LINE CHAINAGE EASTING NORTHING BEARING 10070.761 48659.942 0°09′30″ IP 0.000 10071.037 48759.942 100.000 0°09′30″ 10071.314 48859.941 200.000 0°09′30″ 207.887 10071.335 48867.828 0°09′30″ TC 210.000 10071.514 48869.931 9°32′39″ 220.000 10076.646 48878.223 53°57′34″ 229.823 10085.939 48880.579 97°35′25″ CT 229.823 10085.939 48880.579 97°35′25″ IP 258.013 10113.882 48876.856 97°35′25″ IP IP 1 COORDINATE = 10070.7610 48659.9421 CHAINAGE = 0.0000 IP 2 COORDINATE = 10071.3355 48867.8281 CHAINAGE = 207.8868 INTERSECT ANGLE = 0°00′00″ IP 3 COORDINATE = 10071.3761 48882.5201

 CENTRE
 =
 10084.2354

 RADIUS
 =
 12.9000

 LENGTH
 =
 21.9366

 48867.7925 INTERSECT ANGLE = 97°25′55″ START TANGENT COORDINATE = 10071.3355 48867.8281 LENGTH = 14.6920 CHAINAGE = 207.8868 BEARING = 0°09′30″ END TANGENT COORDINATE = 10085.9394 48880.5794 LENGTH = 14.6920 CHAINAGE = 229.8233 BEARING = 97°35′25″ IP 4 COORDINATE = 10085.9394 48880.5794 CHAINAGE = 229.8233 INTERSECT ANGLE = 0°00′00″ IP 5 COORDINATE = 10113.8817 48876.8559 CHAINAGE = 258.0127 MASIMO ROAD DESIGN LINE NORTHING BEARING CHAINAGE EASTING 176.385 10037.635 48617.119 359°30′00″ IP 200.000 10037.429 48640.734 359°30′00″ 221.470 10037.242 48662.202 359°30′00″ IP IP 1 COORDINATE = 10037.6352 48617.1194 CHAINAGE = 176.3849 IP 2 COORDINATE = 10037.2418 48662.2025 CHAINAGE = 221.4697 PARAFFIN DRIVE DESIGN LINE CHAINAGE EASTING NORTHING BEARING 48887.433 97°35′25″ IP 10034.510 349.448 48883.849 97°35′25″ TC 376.581 10061.405 386.826 10070.783 48880.009 126°56′32″ CT 392.130 10075.022 48876.821 126°56'32" IP IP 1 COORDINATE = 10034.5097 48887.4327 CHAINAGE = 349.4480 IP 2 10066.5967 48883.1569 COORDINATE = CENTRE = 10058.7629 48864.0240 = RADIUS 20.0000 LENGTH = 10.2457 INTERSECT ANGLE = 29°21′07″ START TANGENT COORDINATE = 10061.4047 48883.8488 LENGTH = 5.2379 CHAINAGE = 376.5807 BEARING = 97°35′25″ END TANGENT COORDINATE = 10070.7831 48880.0089 LENGTH = 5.2379 CHAINAGE = 386.8264 BEARING = 126°56′32″

IP 3 COORDINATE = 10075.0220 48876.8214 CHAINAGE = 392.1300	ALIGNMENT APOINT NOEASTINGNORTHINGRLA110025.23748659.88516.352A210034.04548650.40217.316A310034.06548648.03917.375
SHOALING DRIVE DESIGN LINE CHAINAGE EASTING NORTHING BEARING	CURVE NO I RADIUS ARC A1 - A2 84.767 9.600 14.203 2.
182.981 10017.167 48663.865 94°44′00″ IP 200.000 10034.127 48662.460 94°44′00″ IP 224.318 10058.363 48660.454 94°44′00″ IP 224.318 10058.363 48660.454 94°44′00″ IP 224.318 10058.363 48660.454 94°44′00″ IC 249.189 10083.205 48660.461 85°14′00″ CT 249.189 10083.205 48660.461 85°14′00″ IP 264.979 10098.941 48661.773 85°14′00″ IP	ALIGNMENT B POINT NO EASTING NORTHING RL B1 10040.665 48648.096 17.375 B2 10051.057 48657.747 17.632 CURVE NO I RADIUS ARC
IP 1 COORDINATE = 10017.1666 48663.8647 CHAINAGE = 182.9811	B1 - B2 95.233 9.600 15.956 3. <u>ALIGNMENT C</u> POINT NO EASTING NORTHING RL C1 10067.498 48673.492 18.315
IP 2 COORDINATE = 10058.3625 48660.4537 CHAINAGE = 224.3180	C210067.49848673.41018.317C310057.10648663.86917.848
INTERSECT ANGLE = 0°00′00″	CURVE NO I RADIUS ARC C2 – C3 94.575 9.600 15.846 3.
IP 3 COORDINATE = 10070.7841 48659.4252 CENTRE = 10070.7403 48809.9421 RADIUS = -150.0000 LENGTH = 24.8709 INTERSECT ANGLE = 9°30′00″	ALIGNMENT DPOINT NOEASTINGNORTHINGRLD110084.49648663.88018.707D210074.09848673.47318.315
START TANGENT	CURVENO I RADIUS ARC D1-D2 94.925 9.600 15.905 3.
COORDINATE = 10058.3625 48660.4537 LENGTH = 12.4640 CHAINAGE = 224.3180 BEARING = 94°44′00″ END TANGENT	ALIGNMENT EPOINT NOEASTINGNORTHINGRLE110059.71348880.74514.960E210068.04548871.20315.496E310068.03548867.83715.531
COORDINATE = 10083.2050 48660.4609 LENGTH = 12.4640 CHAINAGE = 249.1889 BEARING = 85°14′00″	CURVE NO I RADIUS ARC E1 – E2 82.568 9.600 13.834 2.
IP 4 COORDINATE = 10083.2050 48660.4609 CHAINAGE = 249.1889	ALIGNMENT FPOINT NOEASTINGNORTHINGRLF110074.63548867.81915.615F210085.50348877.30815.877
INTERSECT ANGLE = 0°00'00''	CURVE NO I RADIUS ARC F1 – F2 97.432 9.600 16.325 3.
IP 5 COORDINATE = 10098.9408 48661.7730 CHAINAGE = 264.9793	ALIGNMENT GPOINT NOEASTINGNORTHINGRLG110086.37548883.85115.877G210078.92448884.84315.686G310074.83948884.50515.570G410068.98348884.96315.374G510061.84148887.12015.030G610060.58548887.28714.960
	CURVE NOIRADIUSARCG2 - G324.6559.6004.1310.G3 - G443.0808.0006.0150.G4 - G518.42523.3007.4930.
	<u>ALIGNMENT H</u> POINT NO EASTING NORTHING H1 10071.181 48880.460 H2 10069.717 48881.471

estuarv	
CSLUMY	
leopold	

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	VISION	DATE	APP'D

<u>NOTES</u> 1. SETOUT CO-ORDINATES REFER TO LIP OF KERB/EDGE OF CONCRETE. 2. REFER TO SHEET NUMBER 6 FOR LIP PROFILES.

Principal Leopold Developments Pty Ltd Level 1, 6 Riverside Quay Southbank, Victoria 3006

Designed C. Barker Drawn Checked Approved

Α

0.019

0.176

0.176

0.018

0.177

0.177

10069.717

10068.889

10069.078

10070.466

10071.309

1

4.950

90.000

90.000

4.971

90.381

90.381

48881.471

48881.281

48880.454

48879.496

48879.619

ARC

1.780

0.942

0.942

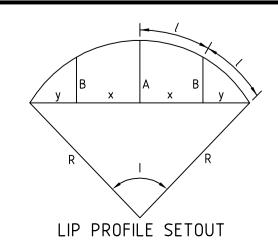
1.687

0.946

0.946

RADIUS

20.600


0.600

0.600

19.440

0.600

0.600

H 2

НЗ

Η4

Η5

Η6

CURVE NO

H1 – H2

H2 – H3

H3 - H4

H4 – H5

H5 – H6

H6 – H1

B	X	Y	L	MID POINT RL
1.860	3.470	3.001	3 . 5 5 1	16.853
B	X	Y	L	MID POINT RL
2.312	3.875	3.216	3.989	17.429
B	X	Y	L	MID POINT RL
2 . 2 8 2	3.850	3.204	3.962	18.192
B	X	Y	L	MID POINT RL
2 . 298	3.863	3.210	3.976	18.493
B	X		L	MID POINT RL
1 . 7 7 0	3.384		3.459	15.306
B	X	Y	L	MID POINT RL
2.4 1 1	3.959	3 . 2 5 5	4.0 8 1	15.697
B 0 . 166 0 . 4 18 0 . 2 2 5	X 1 . 0 3 1 1 . 4 9 5 1 . 8 7 1	Y 1 . 0 1 9 1 . 4 4 2 1 . 8 5 9	1.033 1.504	MID POINT RL 15.629 15.481 15.216
B	X	Y	L	
0.014	0 . 4 4 5	0.445	0 . 4 4 5	
0.130	0 . 2 3 0	0.195	0 . 2 3 6	
0.130	0 . 2 3 0	0.195	0 . 2 3 6	
0.014	0 . 4 2 2	0.421	0 . 4 2 2	
0.131	0 . 2 3 1	0.195	0 . 2 3 7	
0.131	0 . 2 3 1	0.195	0 . 2 3 7	

ESTUARY

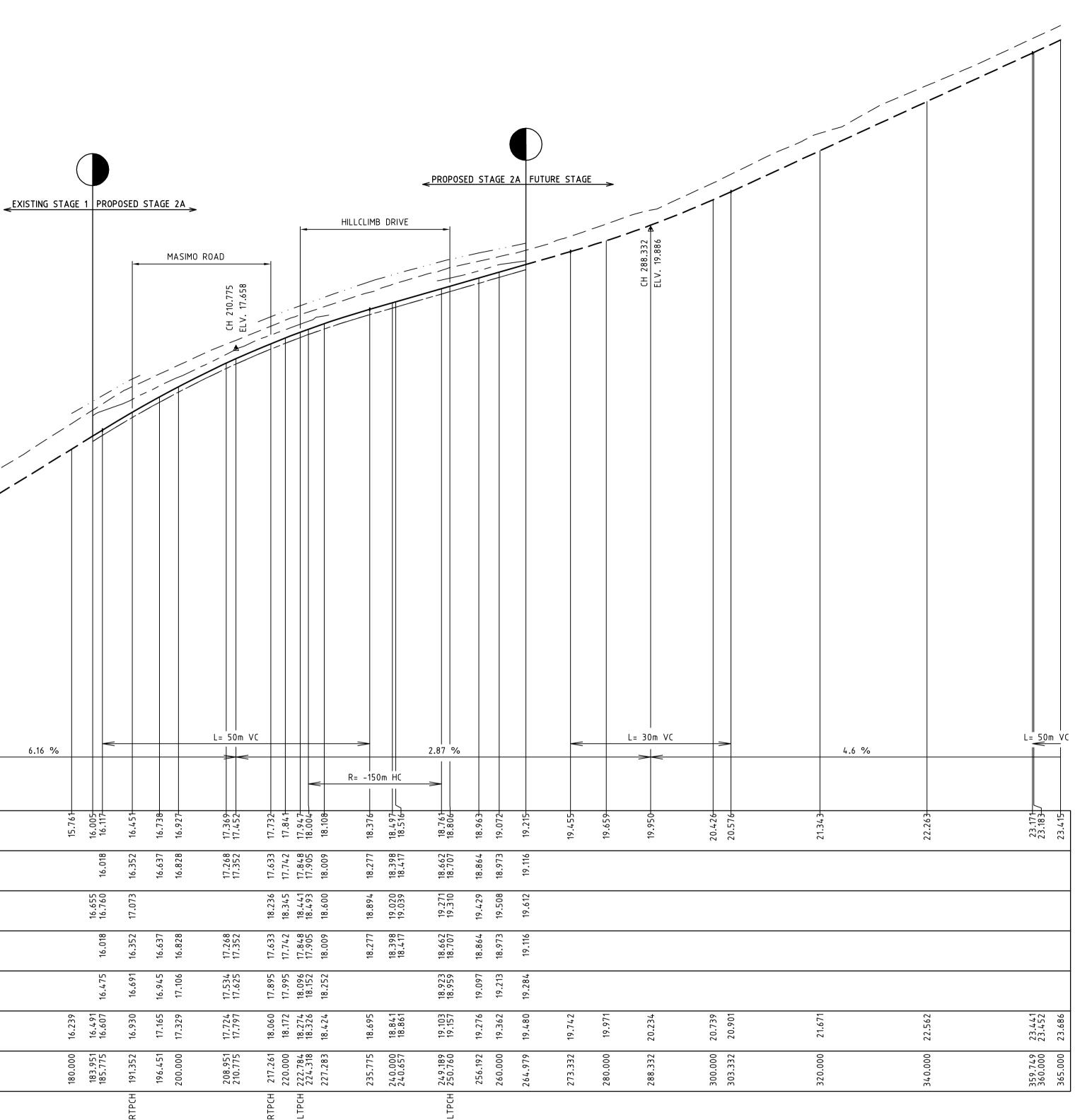
Stage 2A City of Greater Geelong Roadworks and Drainage Setout Information Plan

Drawing No. 0250EHL-02A-07 Sheet No. 7 of 23

Rev B

M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

				CH 138.371 EL V. 13.195	
VERTICAL GEOMETRY		2.05 %	<	L= 50m VC	6
HORIZONTAL GEOMETRY					
DATUM RL9					
DESIGN CENTRELINE	11.934	12.407-	12.682 - 12.836 -	13.452-	14.53 3- 14.73 6-
RIGHT LIP OF KERB					
EXISTING SURFACE AT RIGHT BOUNDARY					
LEFT LIP OF KERB					
EXISTING SURFACE AT LEFT BOUNDARY					
EXISTING SURFACE	11.947 12.020	12.543	12.921 13.113	13.774 13.870	14.991 15.208
CHAINAGE	77.000 80.000	100.000	113.371	14.0.000	160.000 163.371


Principal	Leopold Developments Pty Ltd
	Level 1, 6 Riverside Quay
	Southbank. Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

|--|

· · · ·
· ·

EXISTING SURFACE DESIGN LINE
FUTURE DESIGN LINE
RIGHT BUILDING LINE
RIGHT LIP OF KERB LEFT BUILDING LINE

SHOALING DRIVE LONGITUDINAL SECTION

20

M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

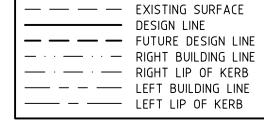
ESTUARY

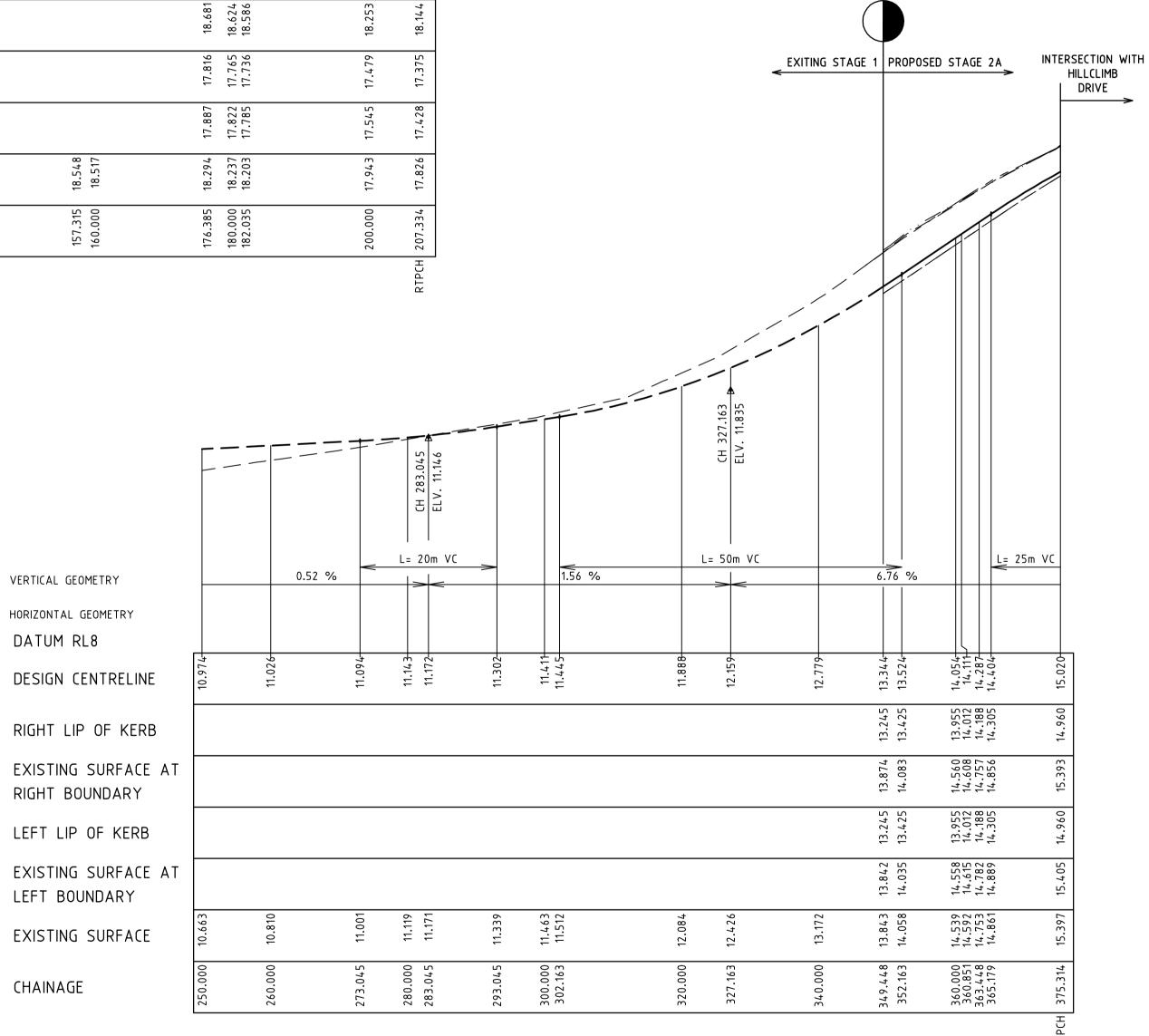
Stage 2A City of Greater Geelong Roadworks and Drainage Longitudinal Sections - 1

Drawing No. 0250EHL-02A-08 Sheet No. 8 of 23

Rev B

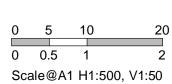
				CH 53.20 RL 18.87)7 6		
		7===		CH 47.696 ELV. 18.934			
VERTICAL GEOMETRY	<	1.22 %	<	L= 30m VC	>		-0.56 %
HORIZONTAL GEOMETRY							
DATUM RL15							
DESIGN CENTRELINE	18.354-	18.597-	18.752-	18.82 5 18.867	18.86 3 18.850-	18.752-	18.640-
RIGHT LIP OF KERB							
EXISTING SURFACE AT RIGHT BOUNDARY							
LEFT LIP OF KERB							
EXISTING SURFACE AT LEFT BOUNDARY							
EXISTING SURFACE	18.054	18.462	18.698	18.832	19.106 19.132	19.166	19.051
CHAINAGE	0000	20.000	32.696	40.000	60.000 62.696	80.000	100.000


MASIMO ROAD LONGITUDINAL SECTION


Principal Leopold Developments Pty Ltd Level 1, 6 Riverside Quay Southbank, Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

<u>LEGEND</u>



	FUTURE STAGE PROPOSED STAG	JE 2A
		- · · · · ·
CH 142.315 ELV. 18.402		
L= 30m VC	-1.43 %	
		>
18.527- 18.486- 18.392- 18.369- 18.188- 18.149-	17.91 5- 17.864 - 17.835-	17.57 8- 17.474 -
	17.816 17.765 17.736	17.479
	18.681 18.624 18.586	18.253 18.14.4
	17.816 17.765 17.736	17.479
	17.887 17.822 17.785	17.545
18.856 18.815 18.761 18.734 18.548 18.548	18.294 18.237 18.203	17.943
120.000 127.315 14.0.000 14.2.315 157.315	176.385 180.000 182.035	200.000 207.334
		Т

PARAFFIN DRIVE LONGITUDINAL SECTION

Designed	С
Drawn	Μ
Checked	С
Approved	J.

. Barker M. Wilks . Birkett Golden

November 2009 November 2009 November 2009 November 2009

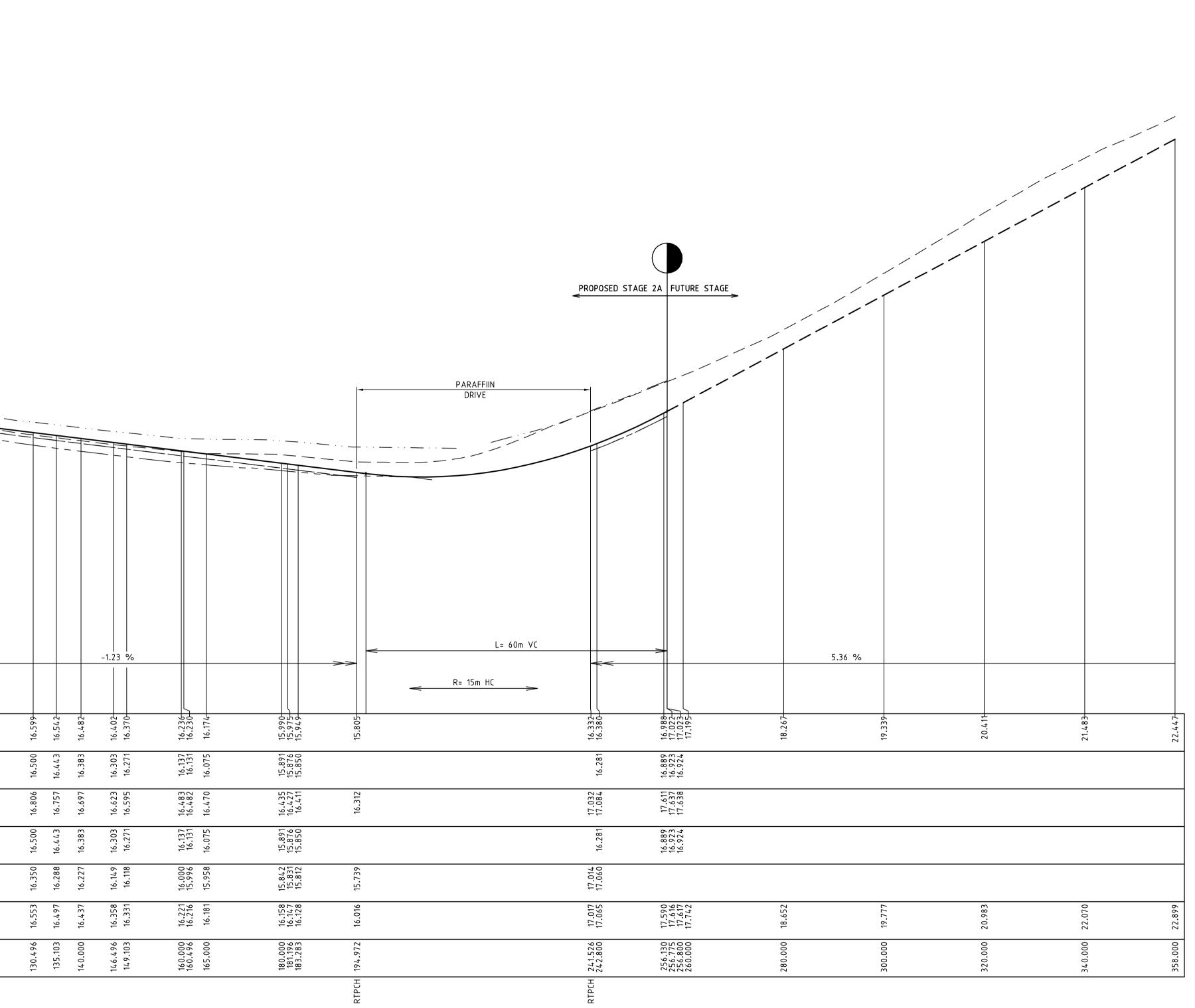
ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage Longitudinal Sections - 2

Drawing No. 0250EHL-02A-09 Sheet No. 9 of 23

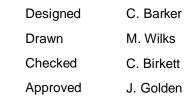
Rev B

estuary
leopold


Principal	Leopold Developments Pty Ltd
	Level 1, 6 Riverside Quay
	Southbank, Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

<u>LEGEND</u>	
	EXIST
	DESIG
	FUTU
_ · · _ · · _	RIGHT
· ·	RIGHT
	LEFT
	LEFT


STING SURFACE SIGN LINE FURE DESIGN LINE r building line T LIP OF KERB LEFT BUILDING LINE

	/ /	· · — .													
			— .	<u> </u>											
					· · · <u> </u> · ·	— ·									
				-				· · · — · · — ·							
											· ·				
													- · · -	— · · _	_
							60								
							CH 67.460 :LV. 17.375								
							CH 6 ELV.								
							L= 30m VC								
VERTICAL GEOMETRY				-1.93 %			><								
HORIZONTAL GEOMETRY															
DATUM RL11															
	114	-06)14	-70	92 - 64-	515	+ 0 + + +	54+ 19+ 19+	79	14 7	75	25	69	53	96
DESIGN CENTRELINE	18.414-	18.290-	18.014-	17.904- 17.899-	17.692- 17.664-	17.526 17.515	17.44 1 17.40 1	17.254- 17.240- 17.221- 17.191-	17.079-	17.041	16.97	16.92 5 -	16.869-	16.75 3	16.696
		~	10		мυ						9				
RIGHT LIP OF KERB		18.191	17.915	17.805 17.800	56	17.427 17.416	17.342 17.303	17.155 17.141 17.122 17.092	16.980	16.942	16.87(16.826	16.770	.65 <i>1</i>	16.597
		<	11	11	17	11	17	6666	16	16	16	16	16	16	16
EXISTING SURFACE AT	12	39	60	56	75 54	67 60	810 74	34 521 611 94	61	10	05	77	75	97 5 0	14
	18.712	18.539	18.260	18.156 18.150	17.975 17.954	17.867 17.860	17.810 17.774	17.634 17.621 17.611 17.594	17.461	17.410	17.305	17.244	17.175	16.997 14.058	000.01
RIGHT BOUNDARY															
LEFT LIP OF KERB		18.191	.915	17.805 17.800	17.593 17.565	17.427 17.416	17.342 17.303	17.155 17.141 17.122 17.092	16.980	16.942	16.876	16.826	16.770	429. 2007	16.597
LLI I LIP OI KLKD		18	17	11	17	17 17	17 17	6666	16	16	16	16	16	16	16
EXISTING SURFACE AT	25	93	75	88 85	92	72 62	80	8 2 2 3 8 3 0 2 3 8 10 10 10 10 10 10 10 10 10 10 10 10 10	53	07	32	58	65	40	01
	18.225	18.093	17.775	17.6	17.516 17.492	17.372 17.362	17.280 17.244	17.098 17.083 17.065 17.038	16.953	16.907	16.832	16.758	16.665	16.540 14 E12	212.01 16.470
LEFT BOUNDARY															
	18.488	18.314	18.016	17.928 17.924	17.744 17.721	17.611 17.604	17.548 17.512	17.366 17.353 17.340 17.318	17.238	17.187	17.080	17.001	16.911	16.750	16.672
EXISTING SURFACE	18.	18	18	17.	17.	17.	17.	17.17	17.	17	17.	17	16	16. 1	16.
	0+	00	 96	000	96	0 m	96 50	000 000 000	96	03	00	96	т	96	
CHAINAGE	13.540	20.000	4.296	40.000 40.253	50.996 52.460	60.000 60.603	64.996 67.460	77.496 78.603 80.000 82.460	91.496	94.603	100.000	103.996	108.603	117.996	122.603
		2	m	44	ഗഗ	99	66	~ ~ 8	6	6	10	10	10	5 5	17
	RTPCH														
	RT														

HILLCLIMB DRIVE LONGITUDINAL SECTION

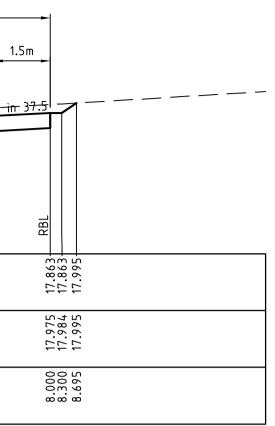
0 5 10 0 0.5 1 Scale@A1 H1:500, V1:50

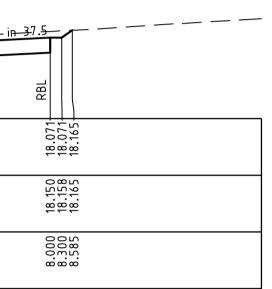
20

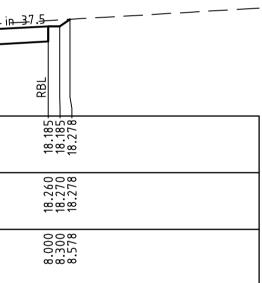
November 2009 November 2009 November 2009 November 2009 ESTUARY

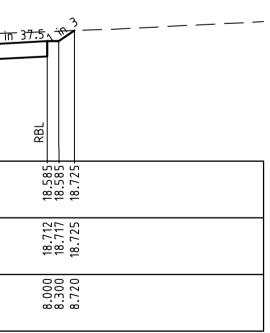
Stage 2A City of Greater Geelong Roadworks and Drainage Longitudinal Sections - 3

Drawing No. 0250EHL-02A-10 Sheet No. 10 of 23

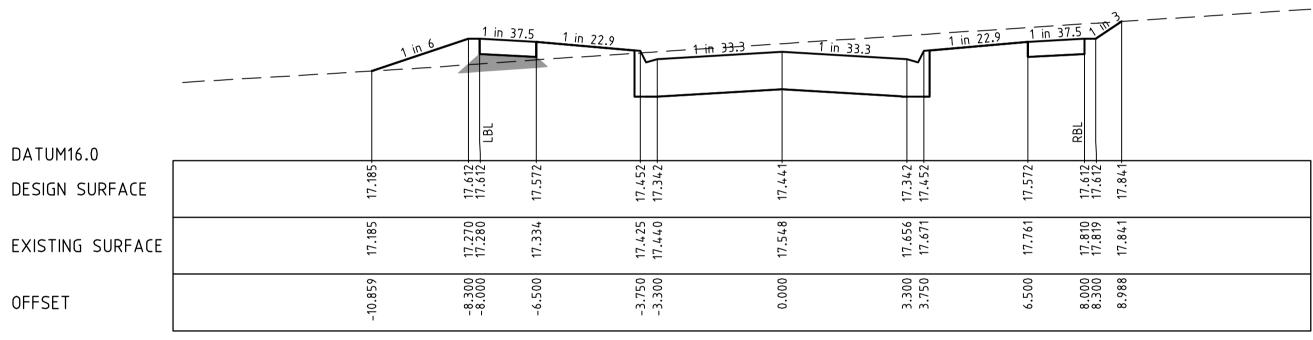

Rev B


				16 m		
	1.5	m	2.75m 0.45m 3	3m 3	.3m 0.45m 2	2.75m 1.5m
	1 in	37.5	<u>1 in 22.9</u>	<u>33.3 — — — ir</u>	33.3 + + 1	in 22.9 — 1 -in 37
	LBL					
DATUM16.0		23	03 63	92	03	23
DESIGN SURFACE	17.863 17.863	17.823-	17.593	. 17.692	17.593-	17.823
EXISTING SURFACE	17.507 17.516	17.557	17.636 17.649	17.744	17.839 17.852	17.932
OFFSET	- 8.300 - 8.000	-6.500	-3.750 -3.300	0.000	3.300 3.750	6.500
				CH 50.996		
	1 in	37.5	<u>1 in 22.9</u>	<u>33.3 — 1-ir</u>	33.3 1	i n 22.9 <u>1 in 3</u>
DATUM17.0 DESIGN SURFACE	18.071	18.030	17.910-	17.899-	17.910	18.030
EXISTING SURFACE	17.677 17.685	17.727	17.824	17.924	18.024 18.037	18.111
OFFSET	-8.300 -8.000	-6.500	-3.750	0.000	3.300 3.750	6.500
				CH 40.253		
	1 in	37.5	1 in 22.9 1 in	33.3 <u> </u>	3 3.3 — — — — 1	i n 22.9 <u>1 in 3</u> 7
DATUM17.0		<u>_</u>	25. 15	114 -	15	7
DATUM17.0 DESIGN SURFACE	18.185 18.185	18.145-	18.025-	18.014	17.915-	18.145-
	17.767 17.775 18.185	17.819 18.145-	17.902 17.916 17.915	18.016 18.014	18.116 17.915- 18.130 18.025-	18.214 18.145-
DESIGN SURFACE						
DESIGN SURFACE	17.767 17.775	17.819	17.902 17.916	18.016	18.116	18.214
DESIGN SURFACE	17.767 17.775	-6.500 17.819	-3.300 17.902 -3.300 17.916	910.81 000.0 CH 34.296	3.300 18.116 3.750 18.130	6.500 18.214
DESIGN SURFACE		-6.500 17.819	-3.300 17.902 -3.300 17.916	910.81 000.0 CH 34.296	3.300 18.116 3.750 18.130	6.500 18.214
DESIGN SURFACE	-8.300 17.767 -8.300 17.775	37.5	1 in 22.9 1 in 22.9 1 in 22.9	⁹⁹ 80 00 00 00 00 00 00 00 00 00 00 00 00		187.25.9 - 1 the 35
DESIGN SURFACE	18.585 LBL	18.545 -6.500 17.819	18.425 18.315 18.315 17.902 17.902 17.902 17.916	910.81 0000 CH 34.296	18.315	18.545 18.545 18.245
DESIGN SURFACE	-8.300 17.767 -8.300 17.775	37.5	1 in 22.9 1 in 22.9 1 in 22.9	⁹⁹ 80 00 00 00 00 00 00 00 00 00 00 00 00		18. 005.9 1 1 1 1 37
DESIGN SURFACE	18.585 LBL	18.545 -6.500 17.819	18.425 18.315 18.315 17.902 17.902 17.902 17.916	910.81 0000 CH 34.296	18.315	18.545 18.545 18.245

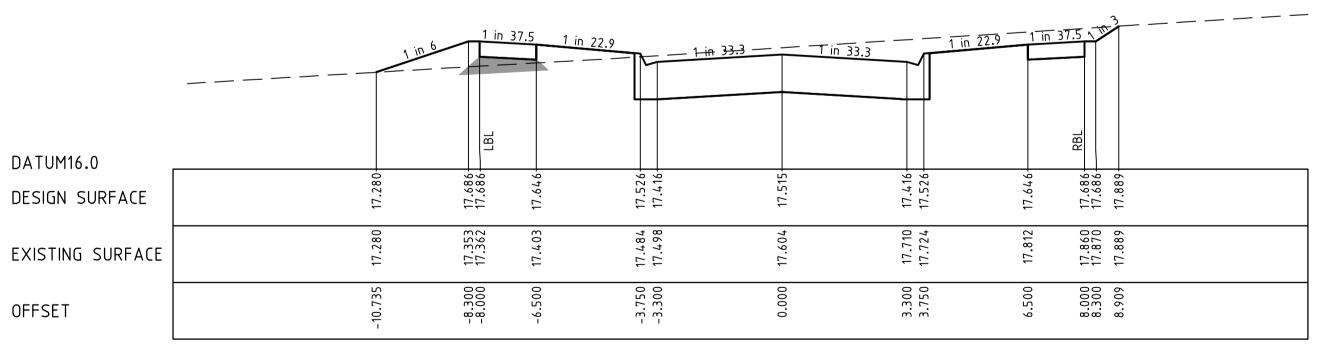



В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

<u>LEGEND</u>	
	EXISTING SURFACE
	DESIGN LINE

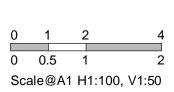


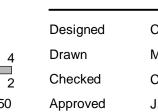
DATUM16.0	 1 in 6	1 in 37.	5 <u>1 in 22.9</u>	<u> </u>	1 in 33.3
	84	<u>+</u> +	71+	4 1	+0+
DESIGN SURFACE	16.984	17.411-	17.371	17.251 17.141	17.240
EXISTING SURFACE	16.984	17.073 17.083	17.136	17.231 17.245	17.353
OFFSET	-10.861	-8.300 -8.000	-6.500	-3.750 -3.300	0.000

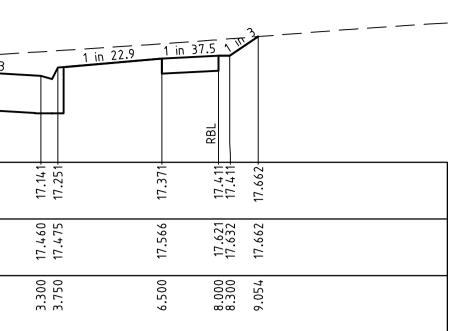

1 in 37.5 1 in 22.9 - 1 in 33.3 - _ _ 1 in 33.3 DATUM16.0 17.425 17.425 . 155 DESIGN SURFACE 17. 17. 1 17.088 17.098 17.244 17.258 17.366 ų EXISTING SURFACE 17 -8.300 -8.000 -3.750 -3.300 -6.500 OFFSET

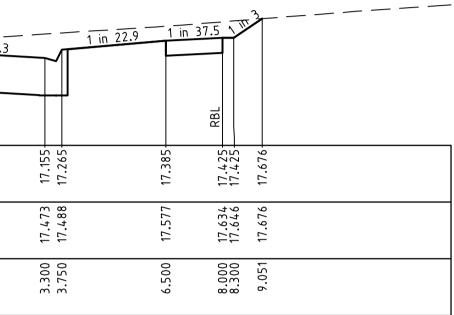
CH 77.496

CH 78.603




CH 64.996

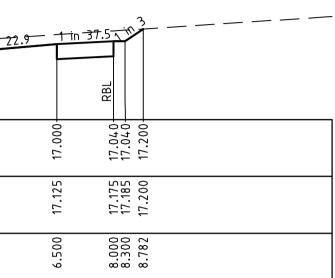

CH 60.603

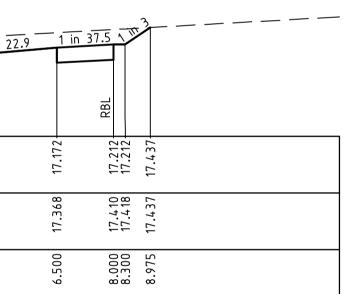


STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE NATURAL SURFACE

C. Barker M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

ESTUARY

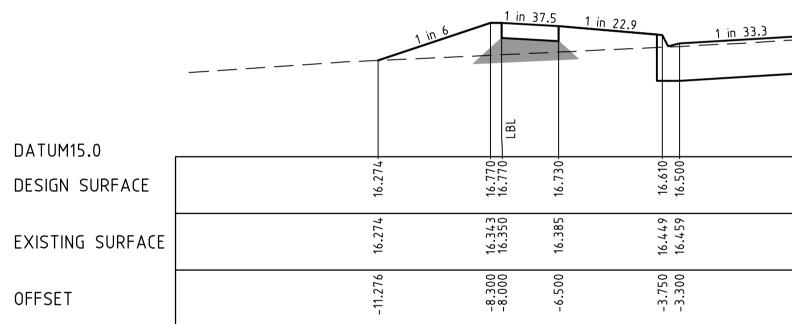

Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Hillclimb Drive - 1 Ch 13.540 - Ch 78.603


Drawing No. 0250EHL-02A-11 Sheet No. 11 of 23 Rev B


		1.5		2.75m 0.45m	3.3m		2.75m 1.5m	
	 1 in 6		37.5	<u>1 in 22.9</u>	1 in 33.3		<u>in 22,9 1 in 37,5</u> <u>g</u>	
DATUM16.0 DESIGN SURFACE	16.441	16.924	16.884	16.654	16.753	16.654	16.884 16.884 16.924 16.924 17.016	
EXISTING SURFACE	 16.441 10	16.531 16.11	16.581	16.657 16	16.750	16.863 16	16.948 16.948 16.997 16 17.016 11 17.016	
-	-11.201 16	-8.300 16	-6.500 16	-3.750 16 -3.300 16	0.000 16	3.750 16	6.500 6.500 8.300 17 8.577 17	
DFFSET		α. α. 	-6.	'n 'n	ة CH 117.99		ວ ຜູ້ຜູ້ຜູ	
	1 in 6	1 in	37.5	1 in 22.9	<u> </u>		<u>-in 22.9 1 in 37.5 3</u>	
		LBL					RBL	
DESIGN SURFACE	16.565-	17.040- 17.040-	17.000-	16.880- 16.770-	16.869-	16.880 ⁻	17.000- 17.04.0- 17.200-	
EXISTING SURFACE	16.565	16.656 16.665	16.713	16.801 16.815	16.911	17.020 17.035	17.125 17.175 17.185 17.200	
DFFSET	-11.14.8	-8.300	-6.500	-3.750 -3.300	0.000	3.300 3.750	6.500 8.000 8.300 8.782	
					CH 108.60	3		
	a in 6	1 in	37.5	1 in 22.9	- 1 in -33.3		<u>In 22.9 1 in 37.5 1 3</u>	
		LBL					ßBL	
DATUM16.0 DESIGN SURFACE	16.651	17.096	17.056	16.936	16.925	16.936	17.056 17.096 17.271	
EXISTING SURFACE	16.651 1	16.748 11.758 11	16.806 17	16.907 10	17.001	17.093 17.106 16	17.194 17.244 17.254 17.271 17.271	
-	-10.973	-8.300 16 -8.000 16	-6.500 16	-3.750 16 -3.300 16	0.000	3.750 17	6.500 17 8.200 17 8.823 17	
DFFSET	-10.	ထိုထို	-9.	,	ظ CH 103.99		່ ບໍ່ ຜ່ຜ່ຜ່	
	 1 in 6	1 in	37.5	<u>1 in 22.9</u>		<u>1 in 33.3</u>	in 22.9 1 in 37.5 1 in 2	
DATUM16.0		LBL					KBL	
DESIGN SURFACE	16.787	17.212- 17.212-	17.172	17.052 16.942	17.041	16.94.2 [.] 17.052 [.]	17.172 ⁻ 17.212 ⁻ 17.212- 17.437-	
EXISTING SURFACE	16.787	16.894 16.907	16.970	17.081 17.094	17.187	17.279 17.292	17.368 17.410 17.418 17.437	
DFFSET	-10.851	-8.300 -8.000	-6.500	-3.750 -3.300	0.000	3.300 3.750	6.500 8.000 8.300 8.975	
					CH 94.603	}		
	1 in 6	1 in	37.5	<u>1 in 22.9</u>	- 1 in 33.3		in 22.9 1 in 37.5 1 3	
	 						RBL	
	16.842	17.250	17.210	17.090	17.079	16.980	17.210 17.250 17.250 17.489	
DESIGN SURFACE			17.011 17.	17.115 17.129 16.1				
EXISTING SURFACE	50 16.842	00 16.941			00 17.238	00 17.330 50 17.342	00 17.419 00 17.461 00 17.469 016 17.489	
DFFSET	 -10.750	-8.300 -8.000	-6.500	-3.750		3.300	6.500 8.300 8.300	
					CH 91.496			
ary pold					LEGEND] [STRUCTURAL F
						EXISTING SURFACE		PAVEMENT ANI CONSTRUCTED AB

est

18.03.10 B COUNCIL AMENDMENTS A ISSUED TO COUNCIL 20.01.10 REVISION DATE APP'D



	 1 in 6	1 in 37.5	<u>1 in 22.9</u>	<u>1 in 33.3</u>	<u>1 in 33.3</u>	<u> </u>		S
DATUM15.0			<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02			
DESIGN SURFACE	16.00 16.01	16.573	45.01 ا	16.3(16.41	16.303 16.413	16.5	16.57 16.63 16.63
EXISTING SURFACE	16.060 16.142	16.149	16.188	16.258 16.270	16.358	16.4 <i>67</i> 16.482	16.573	16.623 16.633 16.639
OFFSET	- 11.380	-8.000	002.3-	-3.750 -3.300	0.000	3.750	6.500	8.300 8.498 8.498

	 1 in 6	1 in 37.5	5 <u>1 in 22.9</u>	1 in 33.3	<u>1 in 33.3</u>	1 in_22.9		RBL	
DATUM15.0 DESIGN SURFACE		16.713	16.673	16.553	16.542	16.443	16.673	16.713 16.713 16.772	
EXISTING SURFACE	16.211	16.288		16.405	16.497	16.604	16.708	16.757 16.766 16.772	
OFFSET		000.8-	-6.500	-3.750 -3.300	0.000	3.750	6.500	8.000 8.300 8.475	

DATUM15.0	 1 in 6 1 in 6 I in 6 I in 1 I	37.5 <u>1 in 22</u>	2.9 <u>1 in</u>	33.3 <u>Lin 3</u>	3.3 — — <u>1 in 2</u>	<u>2.9 1 in 37.5</u>	
DATOMIS.0	8 6			 9			
DESIGN SURFACE	16.388 ⁻ 16.867 ⁻ 16.867 ⁻	16.827	16.707	16.69	16.597 16.707	16.827- 16.867- 16.867- 16.929-	
EXISTING SURFACE	16.463 16.470	16.505	16.571 16.581	16.672	16.772 16.786	16.914 16.914 16.923	
OFFSET	-11.179 -8.300 -8.000	-6.500	-3.750 -3.300	0.000	3.300 3.750	6.500 8.000 8.485	

0 1 2 0 0.5 1 Scale@A1 H1:100, V1:50

4

2

C. Barker Designed Drawn Checked Approved

_ REQUIRED UNDER FOOTPATHS WHERE 'E NATURAL SURFACE

CH 146.496

CH 135.103

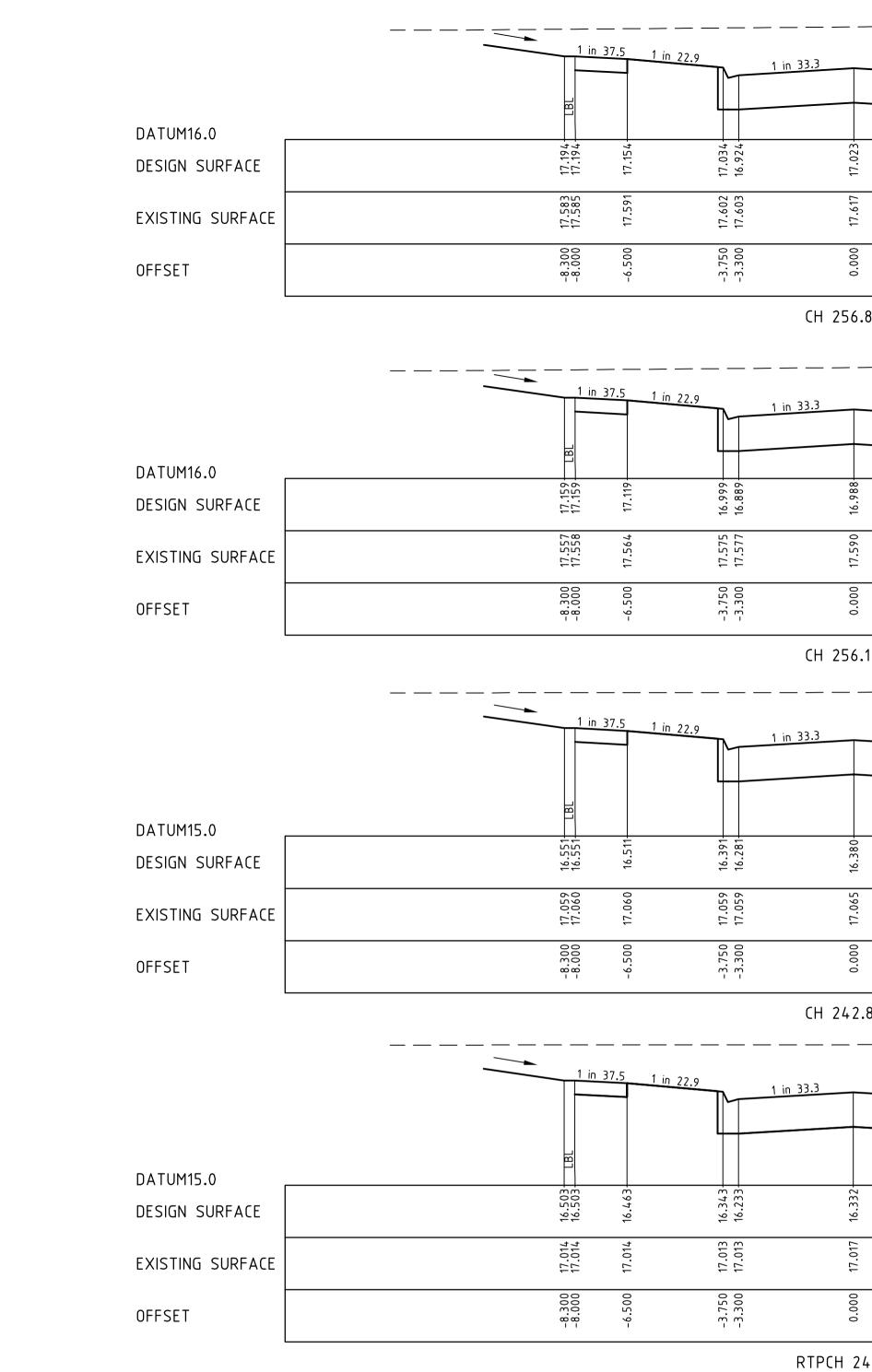
	<u>1 in 33.3</u> — — <u>1 in 22</u>	<u>9 1 in 1</u>	37.5	
			KBL	
16.599-	16.610-	16.730-	16.770 ⁻ 16.770 ⁻ 16.820-	
16.553	16.659 16.673	16.759	16.806 16.815 16.820	
0.000	3.300	6.500	8.000 8.300 8.450	

CH 130.496

CH 122.603

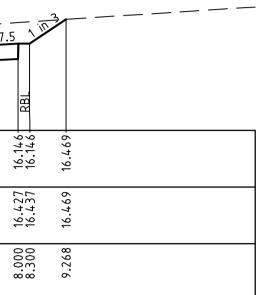
M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

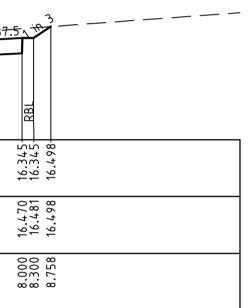
ESTUARY

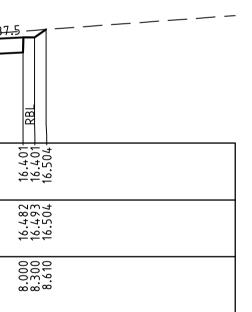

Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Hillclimb Drive - 2 Ch 91.496 - Ch 146.496

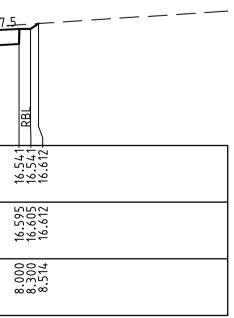
Drawing No. 0250EHL-02A-12 Sheet No. 12 of 23

C SM Urban Pty Ltd ABN 99 124 206 819


Rev B


			<u>↓ 75</u>	/		۰ <u>۲</u>		
		<u>1.5</u> m	2.75m 0	.45m 3.	3m	3.3m 0.4	5m 2.75m	-
	للم ل	1 in 37	7.5 <u>1 in 22.9</u>		33.3		1 in 22.9	_
		LBL	T l					
DATUM15.0	15.658	16.120	16.080	15.850	15.949	15.850	960	
DESIGN SURFACE								
EXISTING SURFACE	15.658	15.800 15.812		15.997	16.128		16.268	
OFFSET	-11.074	-8.300	-6.500	0د/.٤- 3.300 -	0.000	3.300	3.750	
					CH 183.28	33		
	المرا	1 in 37	7.5 1 in 22.9		33.3 — —	1 in 33.3	1 in 22.9	_
DATUM15.0 DESIGN SURFACE	15.677	16.14.6	16.106	15.876	15.975	15.876	5.986	
	15.677	15.839		1 666.cl	16.14.7	16.272		
EXISTING SURFACE								
OFFSET	-11.112	-8.300	-6.500	-3.300 -3.300	0.000	3.300	3.75	
					CH 181.19	96		
		1 in 37	7.5 1 in 22.9	1 in	33.3	<u> </u>	<u> </u>	_
		LBL					4	
DATUM15.0 DESIGN SURFACE	15.849	16.345	16.305		16.174	16.075	6.185	
EXISTING SURFACE	15.849	15.949 16.958		16.085 1	16.181		16.315 16.315	
	-11.280	-8.300		-3.300 16	0.000			
OFFSET		<u></u> ~ ~ ~ ~	- 6.	., .,			m.	
					CH 165.0	00		
	1 in	6 1 in 37	7.5 1 in 22.9	1 in	33.3	<u>_1 ia-33.3</u> —	<u> </u>	-
		LBL					-1	
DATUM15.0 DESIGN SURFACE	15.887	16.401	16.361	16.24]	16.230	16.131	16.241	
	15.887	15.996		16.124	16.216 1	16.322		
EXISTING SURFACE								
OFFSET	-11.386	-8.300	-6.500	ارد. ۶- 3.300 -	0.000	3.300	3.75	
					CH 160.4	96		
		6 1 in 37	7.5 <u>1 in 22.9</u>		33.3	<u>1 in 33.</u> 3 — —	- <u>1 in 22.9</u> -	-
		BL					-1	
DATUM15.0	16.027	16.541	16.501	16.271	16.370	16.271	381	
DESIGN SURFACE								
EXISTING SURFACE	16.027	16.111 16.118		16.239	16.331			
OFFSET	- 11.387	-8.300	-6.500	-3.300 -3.300	0.000	3.300	3.750	
					CH 149.1	03		
estuary leopold						LEGEND		-
Leopold					$\left \right $		EXISTING SURF. DESIGN LINE	A
pal Leopold Developments Pty Ltd	B COUNCIL AMENI			.03.10				
al Loopold Dovelopments Dty Ltd	A ISSUED TO COL					L		•




16.120 16.120 16.455 16.411 16.421 16.455 8.000 8.300 9.3(



RTPCH

STRUCTURAL FILL REQUIRED UNDER PAVEMENT AND FOOTPATHS WHERE CONSTRUCTED ABOVE NATURAL SURFACE

0 1 2 0 0.5 1 Scale@A1 H1:100, V1:50

4

1 in 33.3	1 in 22.9	1 in 3	7.5
	H		RBL
17.023	16.924 17.034	17.154	17.194
17.617	17.628	17.635	17.638
0000	3.750	6.500	8 .300 8 .300
56.800			
1 in 33.3	1 in 22.9	1 in 3	7.5
	_ _		RB
16.988-	16.889- 16.999-	17.119-	17.159
17.590	17.601 17.602	17.608	17.611
0.000	3.300 3.750	6.500	8.300 8.300
56.130			
		 1 in 3	75
1 in 33.3	1 in 22.9		
			RBL
16.380	16.391	16.511	16.55 17.55 17.55
17.065	17.073	17.080	17.084
0.000	3.300 1 3.750 1	6.500 1	8.300
42.800		_	
1 in 33.3	1 in 22.9	1 in 3	7.5
			182
16.332	16.233	16.463	16.503
17.017	17.024 1	17.032	17.032
0.000	3.300 1 3.750 1	6.500 1	88.3000
241.526			
			— — 3 7 — — — — — — — — — — — — — — — — — — —
1 in 33.3	1 in 22.9	1 in 3	7.5
2		9	
15.805	15.706+	15.936-	15.976
16.016	16.146 16.161	16.254	16.312 16.324 16.370
0.000	3.300 3.750	6.500	8.000 8.300 9.482
194.972			

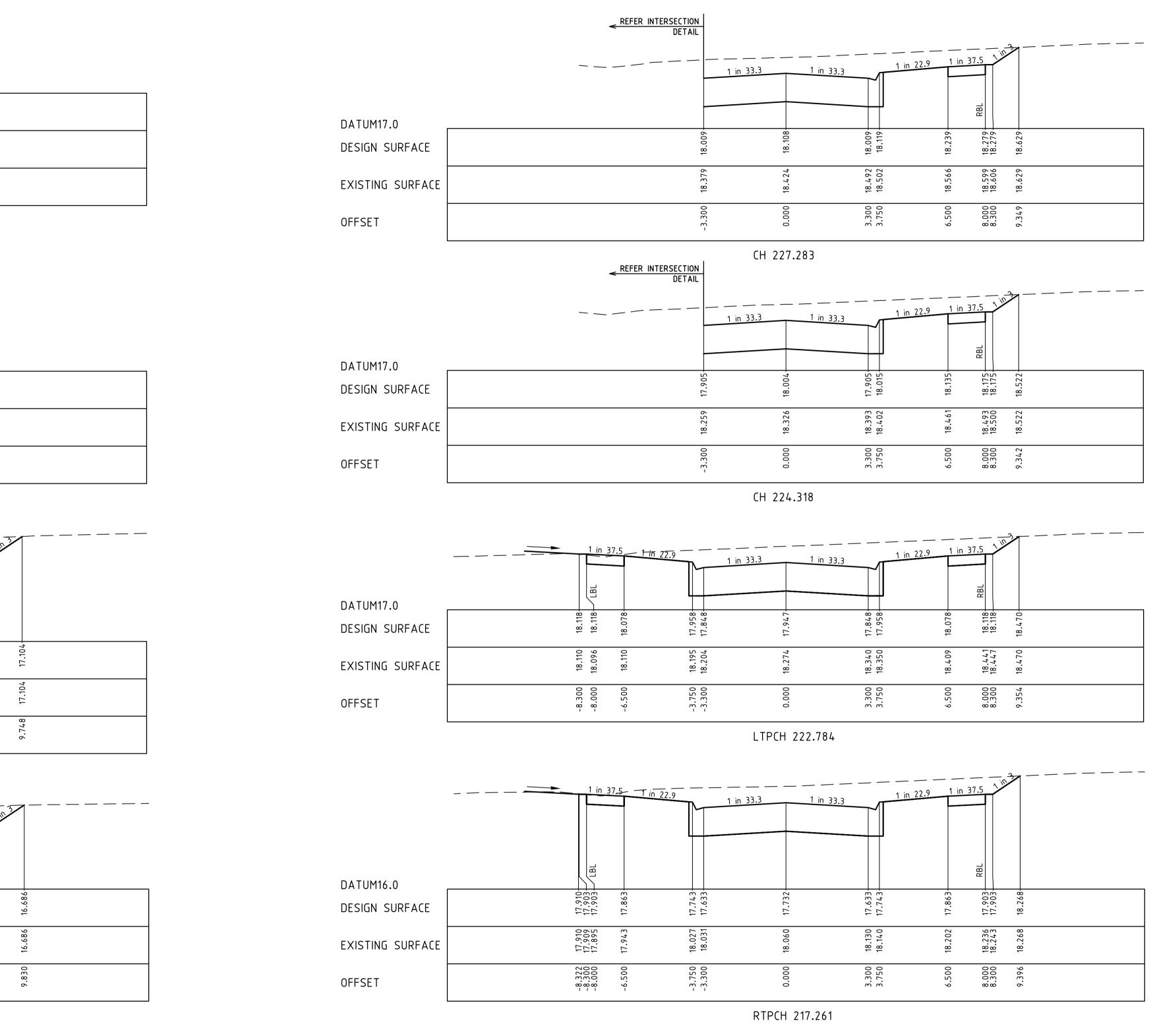
smec consulting group Geelong Tel +61 3 5228 3100

C. Barker M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009 November 2009

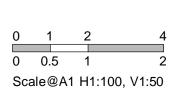
ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Hillclimb Drive - 3 Ch 149.103 - Ch 256.800

Drawing No. 0250EHL-02A-13 Sheet No. 13 of 23

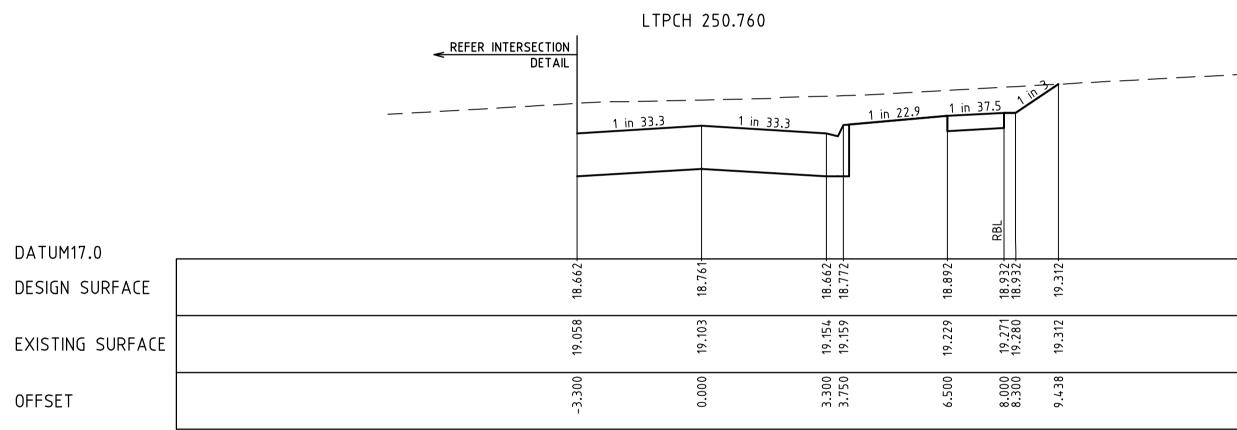

Rev B

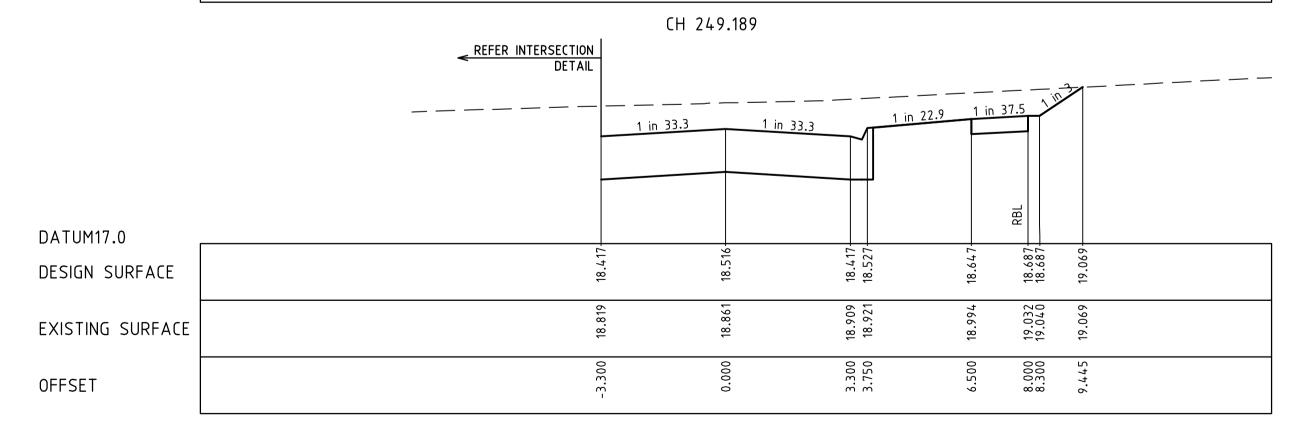
	1.5m 2.75	5m 0.45m 3.	.3m 3.:	Bm PEFER INTE	RSECTION >		
				 33.3			
	LBL						
DATUM16.0	17.540	17.270	17.369	17.270			
DESIGN SURFACE							
EXISTING SURFACE	17.562 17.534 17.664	17.693 17.697	17.724	17.799			
OFFSET	-8.300 -8.000 -6.500	-3.750 -3.300	0.000	3.300			
			CH 208.951	REFER INTE DETAIL	RSECTION		
		<u></u>					
DATUM15.0		39	88	66			
DESIGN SURFACE	16.909- 16.909- 16.869-	16.749-	16.738-	16.639-			
EXISTING SURFACE	16.897 16.945 17.120	17.136 17.138	17.165	17.224			
OFFSET	-8.300 -8.000 -6.500	-3.750 -3.300	0.000	3.300			
			CH 196.451				
							5
		22.9 1 in	33.3 1 in	<u>33.3 1 in</u>	22.9 1 in 1	37.5	
DATUM15.0						RBL	
DESIGN SURFACE	16.622 ⁻ 16.522- 16.582-	16.462 ⁻ 16.352-	16.451-	16.352- 16.462-	16.582-	16.622 ⁻ 16.622-	
EXISTING SURFACE	16.649 16.691 16.816	16.874 16.883	16.930	16.997 16.997	17.046	17.073 17.078	
OFFSET	8.300 8.000 6.500	3.750	0.000	3.300	6.500	8.300	
	-	· i · i	RTPCH 191.35				
							3
		<u>22.9</u> <u>1 in</u>		<u>33.3</u> <u>1 in</u>	22.9 1 in 1	 37.5 1 ^m	
						RBL	
	16.176 16.176 16.136	16.016	16.005	15.906	16.136	16.176	
DESIGN SURFACE							
EXISTING SURFACE	16.356 16.384 16.395	16.429 16.435	16.491	16.572 16.582	16.629	16.655 16.660	
OFFSET	-8.300 -8.000 -6.500	-3.750 -3.300	0.000	3.300 3.750	6.500	8.000 8.300	
			CH 183.951				
stuary			+	LEGEND			



B COUNCIL AMENDMENTS 18.03.10 A ISSUED TO COUNCIL 20.01.10 DATE APP'D REVISION

<u>LEGEND</u> — — — EXISTING SURFACE DESIGN LINE

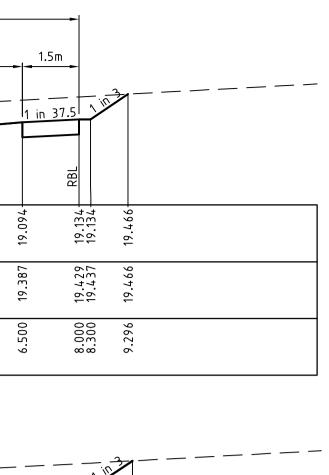


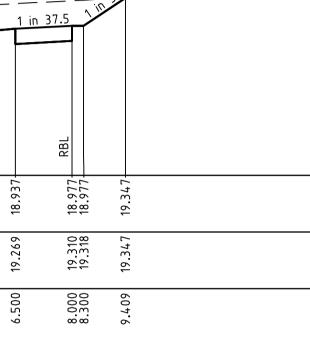


Rev B

	-		16 m		
	- 1.5m	2.75m 0.45m	3.3m	3.3m 0.45m	2.75m
	<u>1 in 37.5</u>	<u>-1 th 22.9</u>	1 in 33.3		1 in 22
DATUM18.0 DESIGN SURFACE	19.075 19.134 19.134 19.134	18.974 18.864	18.963	18.864 18.974	
EXISTING SURFACE	19.075 19.087 19.097 19.097	19.236 19.244	19.276	19.331 19.331	
OFFSET	-8.649 -8.300 -8.000	-3.750	0.000	3.300 3.750	
			CH 256.1	92	

DATUM17.0	 LBL	17.5 <u>t in 22.9</u>				<u>.2.9</u>
DESIGN SURFACE	18.945 ⁻ 18.977- 18.977	18.937	18.817- 18.707-	18.806	18.707	
EXISTING SURFACE	18.945 18.950 18.959	19.000	19.077 19.089	19.157	19.196 19.202	
OFFSET	-8.495 -8.300 -8.000	-6.500	-3.750 -3.300	0.000	3.300 3.750	

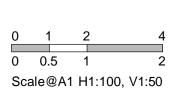

CH 240.657

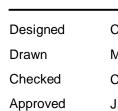


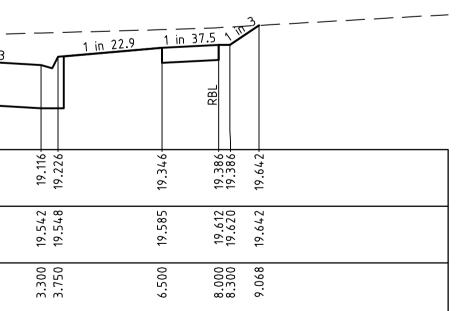
Principal Leopold Developments Pty Ltd Level 1, 6 Riverside Quay Southbank, Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	VISION	DATE	APP'D

LEGEND	
	EXISTING SURFACE
	DESIGN LINE




			in 37.5	<u>1 in 22.9</u>		1 in 33.3	3	1 in 33.3
DATUM18.0								
DESIGN SURFACE	19.259	19.386 ⁻ 19.386-	78		19.226	19.116	19.215	
EXISTING SURFACE	19.259	19.276 19.284	m m		19.425	19.429	19.480	
OFFSET	-9.061	-8.300 -8.000	-6,500		-3.750	-3.300	0.000	


CH 264.979

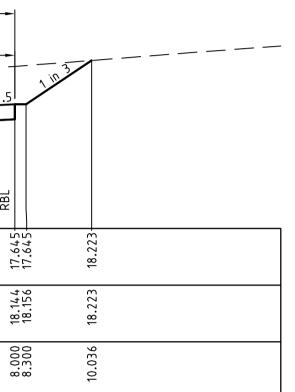
4

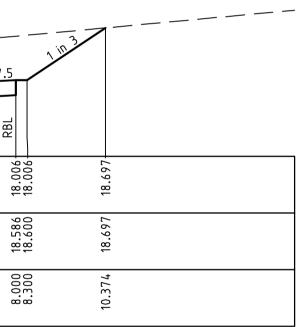
ESTUARY

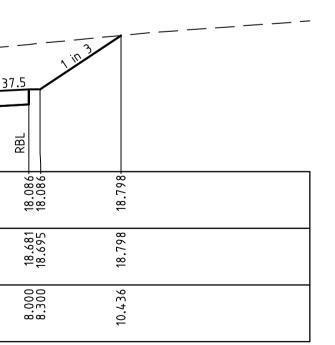
Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Shoaling Drive - 2 Ch 240.657 - Ch 264.979

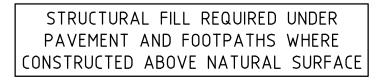
C. Barker M. Wilks C. Birkett J. Golden

November 2009 November 2009 November 2009 November 2009

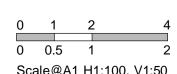

Drawing No. 0250EHL-02A-15 Sheet No. 15 of 23

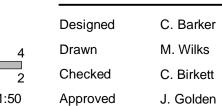

Rev B


		1 11		37.5 1 in	<u>22.9</u> 1 in 33.	<u>3 1 in</u>	<u>33.3</u> <u>1 in</u>	22.9
==			LBL					
DATUM17.0		17.661	18.006	17.966	17.36	17.835	17.736	
DESIGN SURFACE								
EXISTING SURFACE		17.661	17.769 17.785	17.863	18.007 18.030	18.203	18.366 18.388	
OFFSET		-10.367	-8.300	-6.500	-3.750 -3.300	0.000	3.300 3.750	
						CH 182.035		
				37.5 1 in	<u>1 22.9</u> — — — — — — — — — — — — — — — — — — —		<u>33.3</u> <u>1 in</u>	22.9
			LBL					
DATUM17.0		174)86	9 70	17.926	17.915	17.926	
DESIGN SURFACE		17.774-	18.086 ⁻ 18.086-	18.046-				
EXISTING SURFACE		17.774	17.872 17.887	17.965	18.108 18.130	18.294	18.455 18.476	
OFFSET		-10.178	-8.300	-6.500	-3.750 -3.300	0.000	3.300 3.750	
						CH 176.385		
stuary leopold								
octuary						_	<u>EGEND</u>	
JUANY						-	— — EXISTI	
leopola	B COUN	ICIL AMENDM	FNTS		18.03.10		DESIGN	LINE
					20.01.10			
eopold Developments Pty Ltd evel 1, 6 Riverside Quay	A ISSU	ED TO COUNT						


					16 m			
		1.5m	2.75m	0.45m	3.3m	3.3m 0.4	5m 2.75m	1.5m
	 1 in 6	1 in 37.5	<u>1 in 22,9</u>		in 33.3		1 in 22.9	1 in 37.5
DATUM16.0		LBL						RBL
DESIGN SURFACE	17.314-	17.645 ⁻ 17.645 ⁻	- 20 9. / 1	17.485 ⁻ 17.375 ⁻	17.474-	17.375-	17.485	17.605- 17.645- 17.645-
EXISTING SURFACE	17.314	17.428	202.11	17.639 17.662	17.826	17.961	17.978	18.085 18.144 18.144
OFFSET	-10.284	-8.300	- 6.500	-3.750 -3.300	0.000	3.300	3.750	6.500 8.000 8.300

RTPCH 207.334





Scale@A1 H1:100, V1:50 Approved

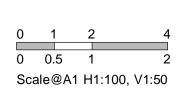
Checked

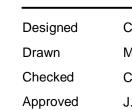
M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009

ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Masimo Road Ch 176.385 - Ch 207.334

Drawing No. 0250EHL-02A-16 Sheet No. 16 of 23


Rev B


November 2009 (C) SM Urban Pty Ltd ABN 99 124 206 819

	-	1	6 m		
	1.5m 2	.75m 0.45m 3.3m	3.3m 0.45m	2.75m 1.5m	
	— — <u> </u>	<u>22.9</u> <u>1 in 33.3</u>	1 in 33.3	1 in 22.9 1 in 37.5	
	EBL			KBL I I I I I I I I I I I I I I I I I I I	
DATUM14.0 DESIGN SURFACE	15.230	15.070	15.070	15.230	
EXISTING SURFACE	15.406 15.406 15.404 15.404 15.404 15.404 15.404		15.397 15 15.386 14 15.386 14	15.390 15.394 15.394 15.394	
	-8.300 -8.300 -6.500 15 15		0.000 15 3.300 15 3.750 15	6.500 15 8.300 15 8.300 15	
OFFSET			ة ش. 375.314	ີ່ ຜູ້ຜູ້	
		<u> </u>		1 in 22.9 1 in 37.5	
		1 in 33.3	1 in 33.3		
DATUM13.0	LBL			BBL	
DESIGN SURFACE	14.458- 14.458- 14.418-	14.298-	14.287- 14.188- 14.298-	14.418- 14.458- 14.458-	
EXISTING SURFACE	14.783 14.782 14.776	14.767 14.765	14.753 14.742 14.740	14.751 14.757 14.758	
OFFSET	-8.300 -8.300 -8.000	-3.750 -3.300	0.000 3.300 3.750	6.500 8.000 8.300	
		CH 30	53.448		
	1 in 37.5 1 i	<u>1 in 33.3</u>	1 in 33.3	1 in 22.9 1 in 37.5	
DATUM13.0	14.282 14.282 14.282	14.012	14.1111 14.012 14.122	14.242 14.282 14.282 14.282 14.288	
DESIGN SURFACE	14.614 14.615 14. 14.615 14. 14.615		\leftarrow \leftarrow		
EXISTING SURFACE			0.000 14.592 3.300 14.588 3.750 14.590	6.500 14.602 8.2000 14.608 8.300 14.610	
OFFSET	-8.300 -8.000 -8.000			6.5 8.0 8.3	
		CH 3	60.851		
	<u> </u>	1 in 33.3	1 in 33.3	1 in 22.9 1 in 37.5	
	В			BB BB	
DATUM12.0 DESIGN SURFACE	13.515	13.245	13.34.4 13.245 13.355	13.475 13.515 13.515	
EXISTING SURFACE	13.841 1 13.842 1 13.846 1		13.843 13 13.853 13 13.855 13	13.864 13 13.874 13 13.877 1	
OFFSET	-8.300 -8.000 -8.000 -6.500 13 -6.500 13		0.000 13 3.300 13 3.750 13	6.500 13 8.200 13 8.300 13	
	αρα 		ظ شش +9.448	ົໝ ໝ ວະ	
estuary leopold			<u> </u>	LEGEND	
P(I) I I V			I	— — — EXISTING SURFACE	

18.03.10 B COUNCIL AMENDMENTS A ISSUED TO COUNCIL 20.01.10 REVISION DATE APP'D

4 Drawn

C. Barker

M. Wilks C. Birkett J. Golden November 2009 November 2009 November 2009

ESTUARY

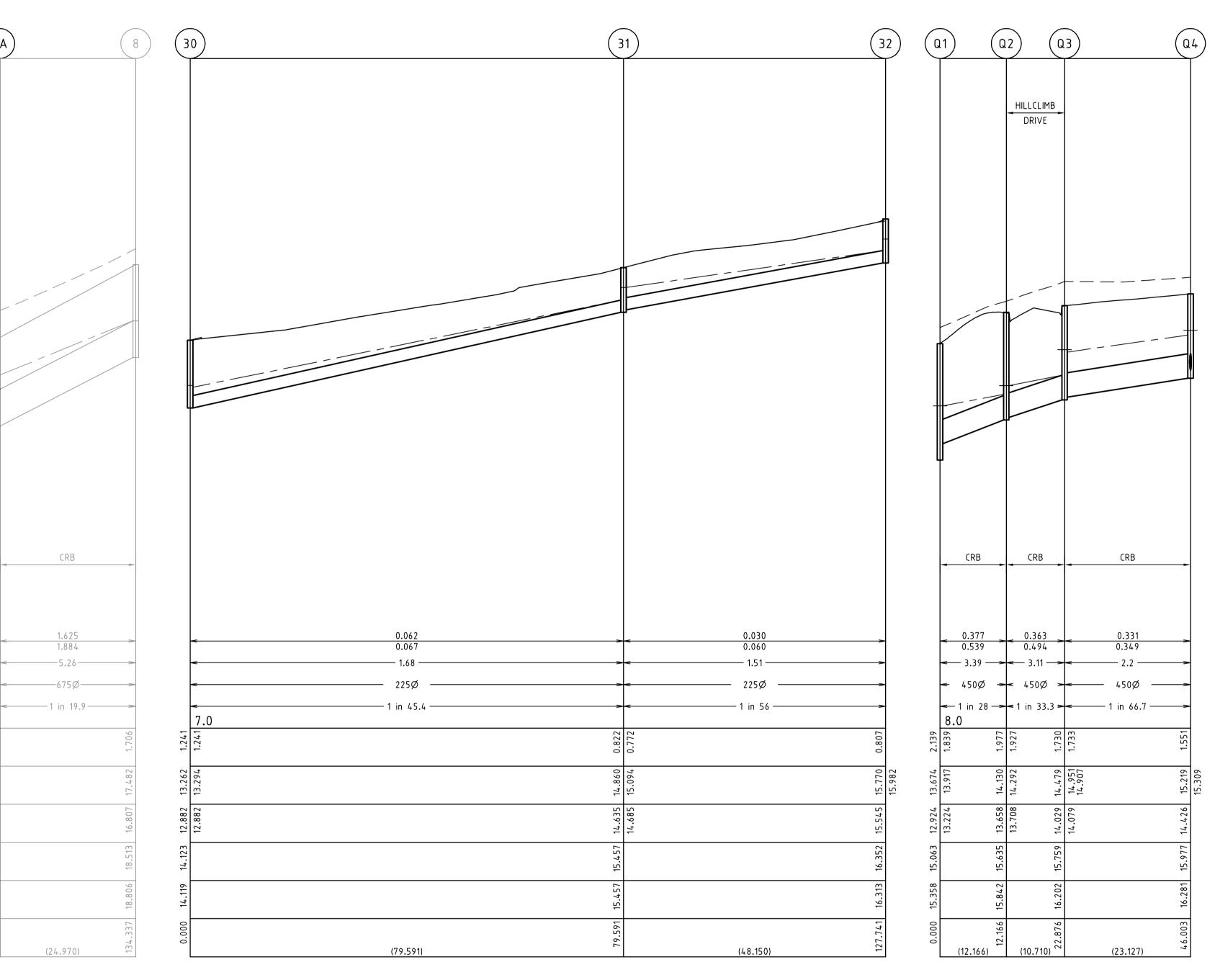
Stage 2A City of Greater Geelong Roadworks and Drainage Cross Sections - Paraffin Drive Ch 349.448 - Ch 375.314

Drawing No. 0250EHL-02A-17 Sheet No. 17 of 23

Rev B

November 2009 (C) SM Urban Pty Ltd ABN 99 124 206 819

	5 (5A)	6	7 (*	7 A
			HILLCLIMB DRIVE		
	CRB	CRB	CRB	CRB	
DESIGN FLOW (m3/s)	2.094	2.094	1.687	1.625	X
CAPACITY (m3/s) AT GRADE VELOCITY (m/s)	2.519 	2.519 	1.747 	1.884 	
PIPE SIZE (mm)	~ 750Ø	> < 750Ø	675Ø	675Ø∍	><
GRADE	1 in 19.5	><1 in 19.5		1 in 19.9—∍	><
DATUM DEPTH TO INVERT	6.0 6.0	1.763	2.139 2.064	1673 1653 1670 1670	070.1
HYDRAULIC GRADE LINE		12.435	13.674	15.580 15.921 16.86	10.4.00
INVERT LEVEL		11.680	12.924 12.999	14.783 14.833 14.833	
FINISHED SURFACE LEVELS		13.443	15.063	16.486	
EXISTING SURFACE LEVEL		13.936	15.358	17.099	
CHAINAGE (Reach Length)	(29.294)	762.62 (24.365)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2000.26 (14.362)	100.601

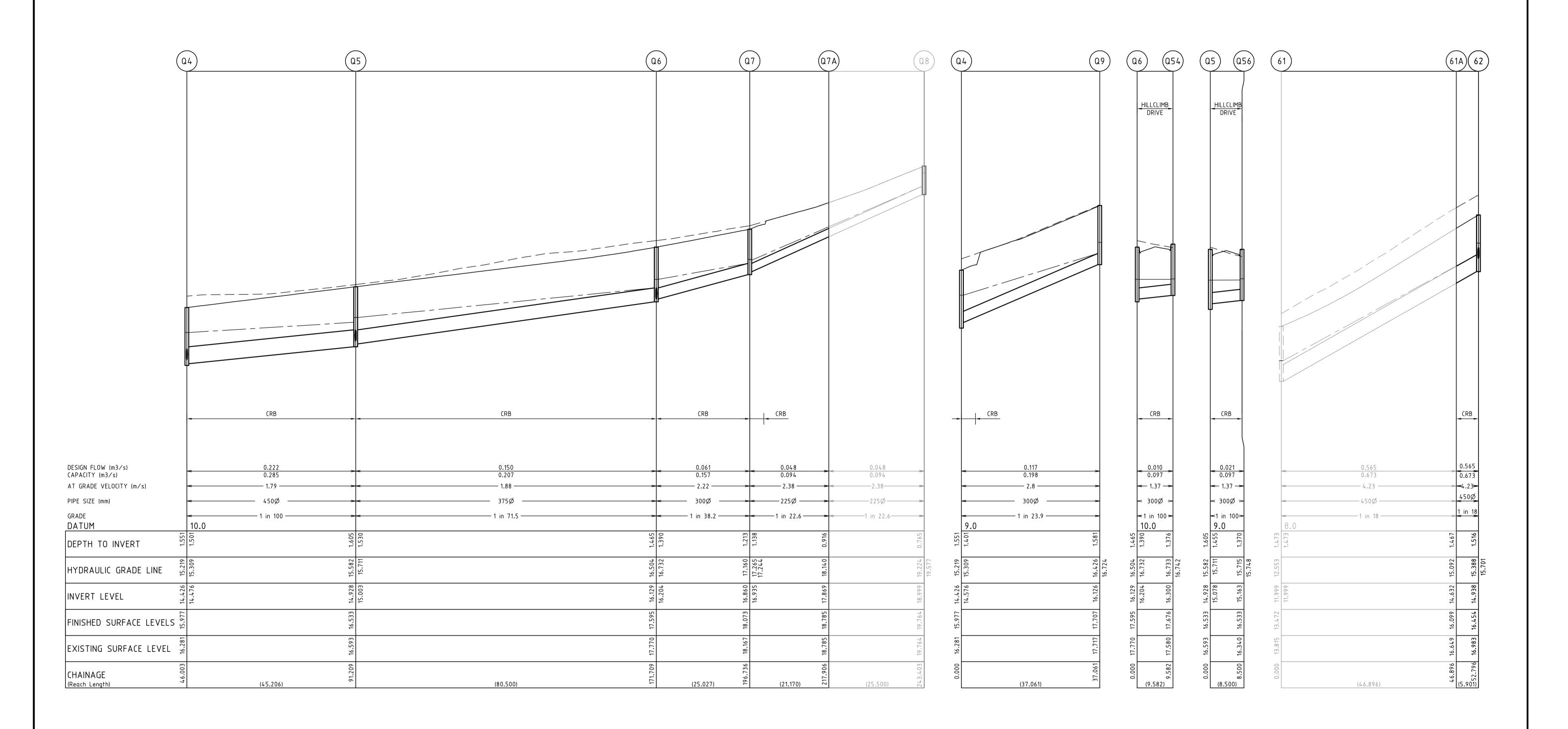


В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

<u>LEGEND</u>

_____ _____

EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT EXISTING DRAINAGE PIPE/PIT ------ HYDRAULIC GRADE LINE



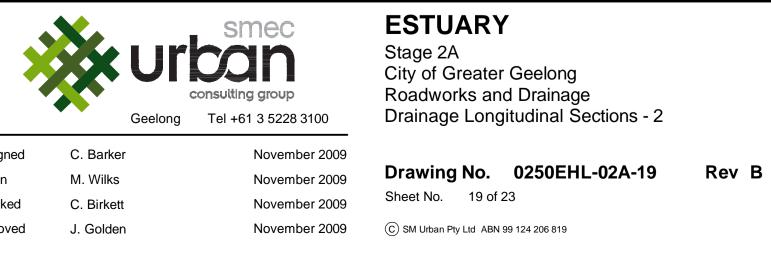
November 2009 November 2009 November 2009 November 2009 ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage Drainage Longitudinal Sections - 1

Drawing No. 0250EHL-02A-18 Sheet No. 18 of 23

Rev B

estuary
leopold


Principal	Leopold Developments Pty Ltd
	Level 1, 6 Riverside Quay
	Southbank, Victoria 3006

В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	VISION	DATE	APP'D

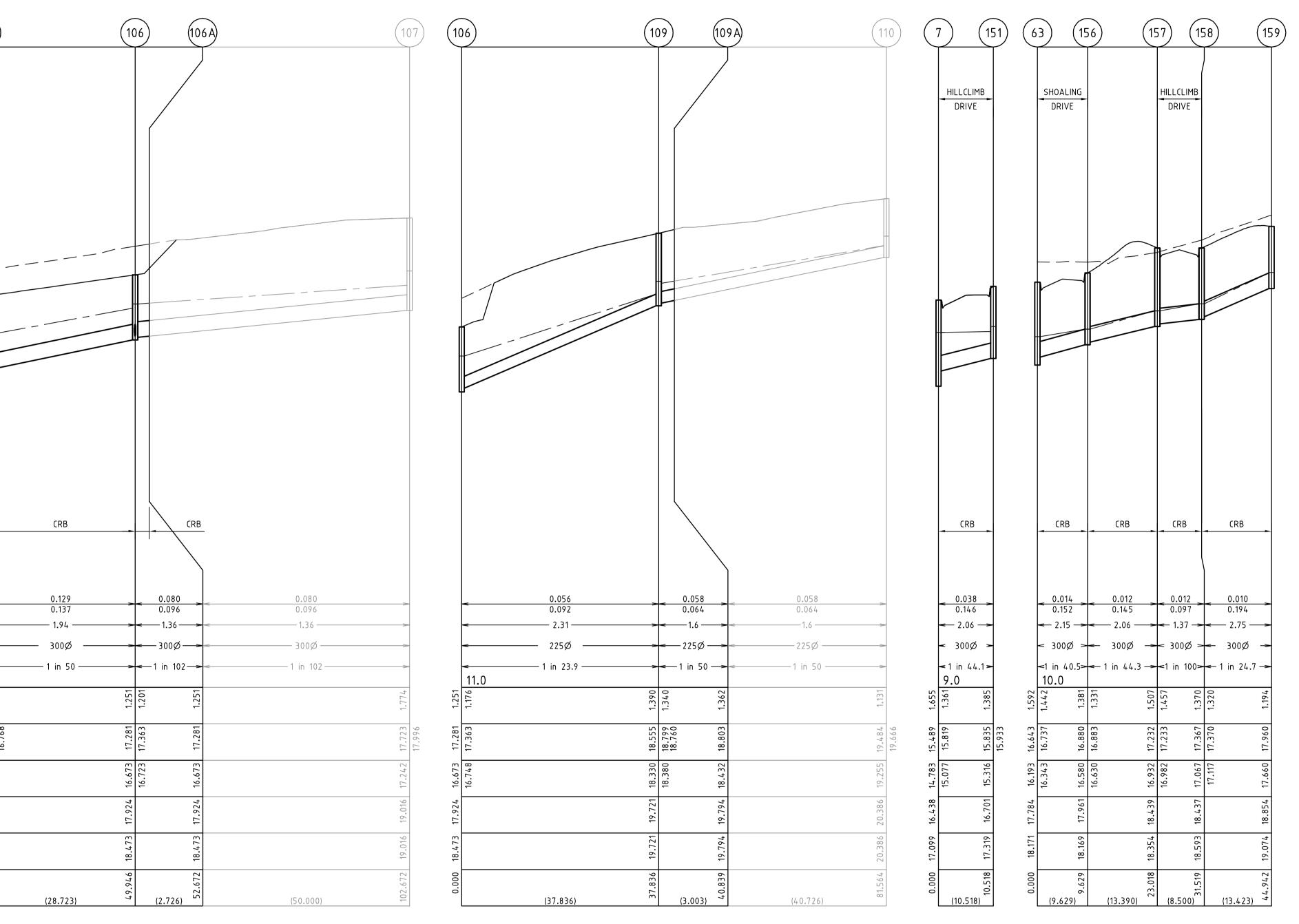
LEGEND

_____ _____

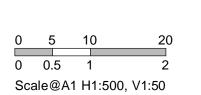
EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT EXISTING DRAINAGE PIPE/PIT ------ HYDRAULIC GRADE LINE

0 5 10 20 0 0.5 1 2 Scale@A1 H1:500, V1:50

	6	2) (6	3)	6	4)	4 A)	6	5	6	2	(10	04 (105
		MASIMO ROAD											ROAD	-
		CRB	-	CRB		CRB			CRB		CRB	_	CRB	
DESIGN FLOW (m3/s) CAPACITY (m3/s) AT GRADE VELOCITY (m/s) PIPE SIZE (mm)		 0.408 0.603 3.79 450Ø 	<	0.394 > 0.494	V V	0.392 > 0.494 > 	0. 	<u>392</u> → 494 .11 →			 0.152 0.152 0.193 2.72 3.72 3.72 		<u>0.143</u> 0.153 - 2.16 - - 300Ø	><
GRADE		<1 in 22.3>	<	— 1 in 33.3 — — >	V			33.3~			- 1 in 25.			
DATUM DEPTH TO INVERT	1.516	1.1466	1.542	1.636	1.586	1.502		1.510		1.516	10.0	1.686	1.636	1.415
HYDRAULIC GRADE LINE	15.388		16.737	17.274	17.371	18.228		18.311	18.4.61	15.388				16.446 16.792 16.768
INVERT LEVEL	14.938		16.243	16.824	16.874	17.774		17.861		14.938	15.286	15.778		16.048 16.098
FINISHED SURFACE LEVELS	16.454	17.784		18.4 60		19.276		19.371		16.454		17.464		17.11
EXISTING SURFACE LEVEL	16.983	18.171		18.833		19.586		19.687		16.983		17.585		18.006
CHAINAGE (Reach Length)	52.796	*0 <i>L</i> .6 <i>L</i> (26.908)		620.66 (19.375)		128.608) (29.608)	(3.2	131.982		0.000	(12.400	12.400	(8.822)	21.223

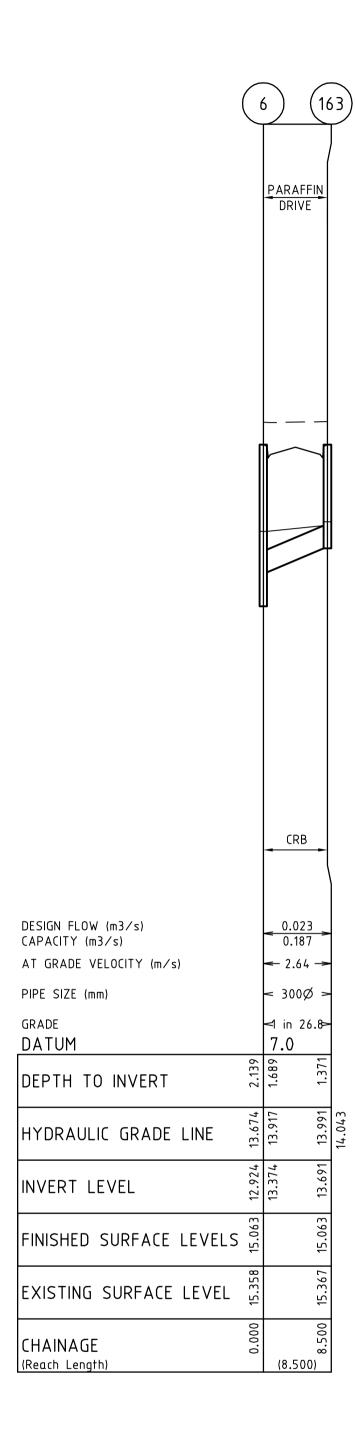


С	PIT 7 TO 151 AMENDED	28.05.10	
В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	VISION	DATE	APP'D


<u>LEGEND</u>

_____ _____ _____

EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT EXISTING DRAINAGE PIPE/PIT HYDRAULIC GRADE LINE



Drawn

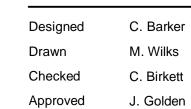
Rev C

PIT NUMBER	TYPE
5 A	EX EP
6	SEP
7	DSEP
7 A	EP
30	EX JP
31	JP
32	JP
61A	EX EP
62	SEP
63	SEP
64	JP
64A	EP
104	SEP
105	SEP
106	SEP
106 A	EP
109	JP
109A	EP
151	DSEP
156	SEP
157	SEP
158	SEP
159	SEP
163	SEP
Q2	DSEP
Q3	DSEP
Q4	JP
Q5	DSEP
Q54	DSEP
Q56	DSEP
Q.6	DSEP
Q7	JP
Q7A	EP
Q.9	JP

estuary
leopold

C	PITS 7 AND 151 AMENDED	28.05.10	
В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
RE	EVISION	DATE	APP'D

LEGEND


EXISTING SURFACE DESIGN SURFACE DRAINAGE PIPE/PIT EXISTING DRAINAGE PIPE/PIT HYDRAULIC GRADE LINE

				1		T SCEHDULE			
	RNAL	INL		OUT		F.S.L.	DEPTH	STANDARD	REMARKS
WIDTH (mm)	LENGTH (mm)	DIAMETER (mm)		DIAMETER (mm)	INV R.L. (m)			DRAWING	
		750	11.680			13.443	1.763		CONNECT TO EXISTING ENI
900	900	675	12.999	750	12.924	15.063	2.139	CGG305, 309	
		450	13.224						
		300	13.374						
2200	900	675	14.833	675	14.783	16.438	1.655	CGG305,312	
		300	15.077						
				675	15.547	17.175	1.628		
		225	12.882			14.123	1.241		
900	600	225	14.685	225	14.635	15.457	0.822	CGG305, 308	
900	600			225	15.545	16.352	0.807	CGG305, 308	
		450	14.632			16.099	1.467		CONNECT TO EXISTING EN
900	900	450	14.988	450	14.938	16.454	1.516	CGG305, 309	
		300	15.286						
900	900	450	16.243	450	16.193	17.784	1.592	CGG305, 309	
		300	16.343						
 900	900	450	16.874	450	16.824	18.460	1.636	CGG305, 306	
	,			450	17.774	19.276	1.502		
 900	900	300	15.828	300	15.778	17.464	1.686	CGG305, 309	
 900	900	300	16.098	300	16.048	17.513	1.465	CGG305, 309	
 900	900	300	16.723	300	16.673	17.924	1.251	CGG305, 309	
900	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			200	6.01	17.724	1.2.51		
		225	16.748	200	14 470	17.02/	1 2 5 1		
 0.00		225	10 200	300	16.673	17.924	1.251		
 900		225	18.380	225	18.330	19.721	1.390	CGG305, 308	
 				225	18.432	19.794	1.362	666205 242	
2200	900			300	15.316	16.701	1.385	CGG305, 312	
 900	900	300	16.630	300	16.580	17.961	1.381	CGG305, 308	
900	900	300	16.982	300	16.932	18.439	1.507	CGG305, 308	
900	900	300	17.117	300	17.067	18.437	1.370	CGG305, 308	
900	900			300	17.660	18.854	1.194	CGG305, 308	
900	900			300	13.691	15.063	1.371	CGG305, 308	
2200	900	450	13.708	450	13.658	15.628	1.970	CGG305, 312	Q100 PIPE
2200	900	450	14.079	450	14.029	15.759	1.730	CGG305, 312	Q100 PIPE
900	900	450	14.476	450	14.426	15.977	1.551	CGG305, 306	Q100 PIPE
		300	14.576						
2200	900	375	15.003	450	14.928	16.533	1.605	CGG305, 312	Q100 PIPE
		300	15.078						
2200	900			300	16.300	17.676	1.376	CGG305, 312	Q100 PIPE
2200	900			300	15.163	16.533	1.370	CGG305, 312	Q100 PIPE
 2200	900	300	16.204	375	16.129	17.595	1.465	CGG305, 312	Q100 PIPE
		300	16.204						
 900	900	225	16.935	300	16.860	18.073	1.213	CGG305, 306	Q100 PIPE
 				225	17.869	18.785	0.916		Q100 PIPE
 900	900			300	16.126	17.707	1.581	CGG305, 306	Q100 PIPE CONSTRUCT AS TEMPORAR
,,,,	,			200	101120		1.501		

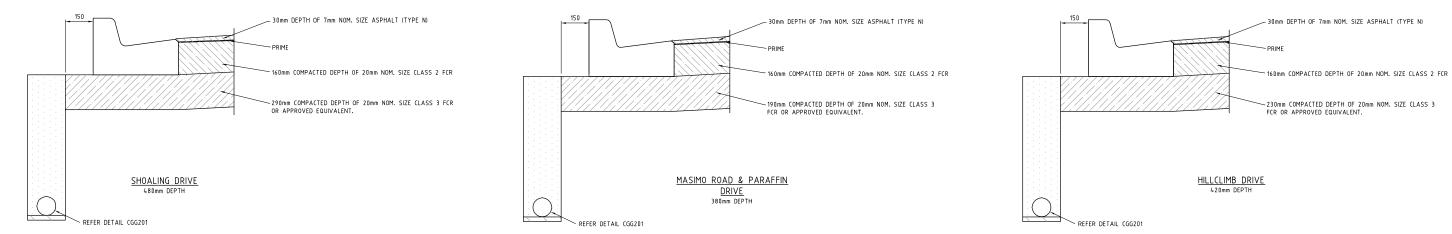
20

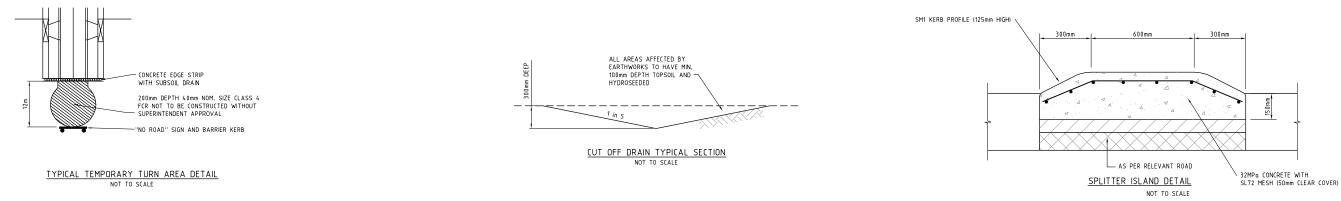
2

END	PIPE				
 -	 -				
END	PIPE				
RARY	END	ENTRY	PIT		

M. Wilks C. Birkett J. Golden

November 2009 November 2009 November 2009


ESTUARY


Stage 2A City of Greater Geelong Roadworks and Drainage Drainage Longitudinal Sections - 4 & Pit Schedule

Drawing No. 0250EHL-02A-21 Sheet No. 21 of 23

Rev C

November 2009 (C) SM Urban Pty Ltd ABN 99 124 206 819

Southbank, Victoria 3006

В	COUNCIL AMENDMENTS		18.03.10	
А	ISSUED TO COUNCIL	20.01.1	20.01.10	
R	EVISION		DATE	APP'D

November 2009

November 2009

November 2009

ESTUARY

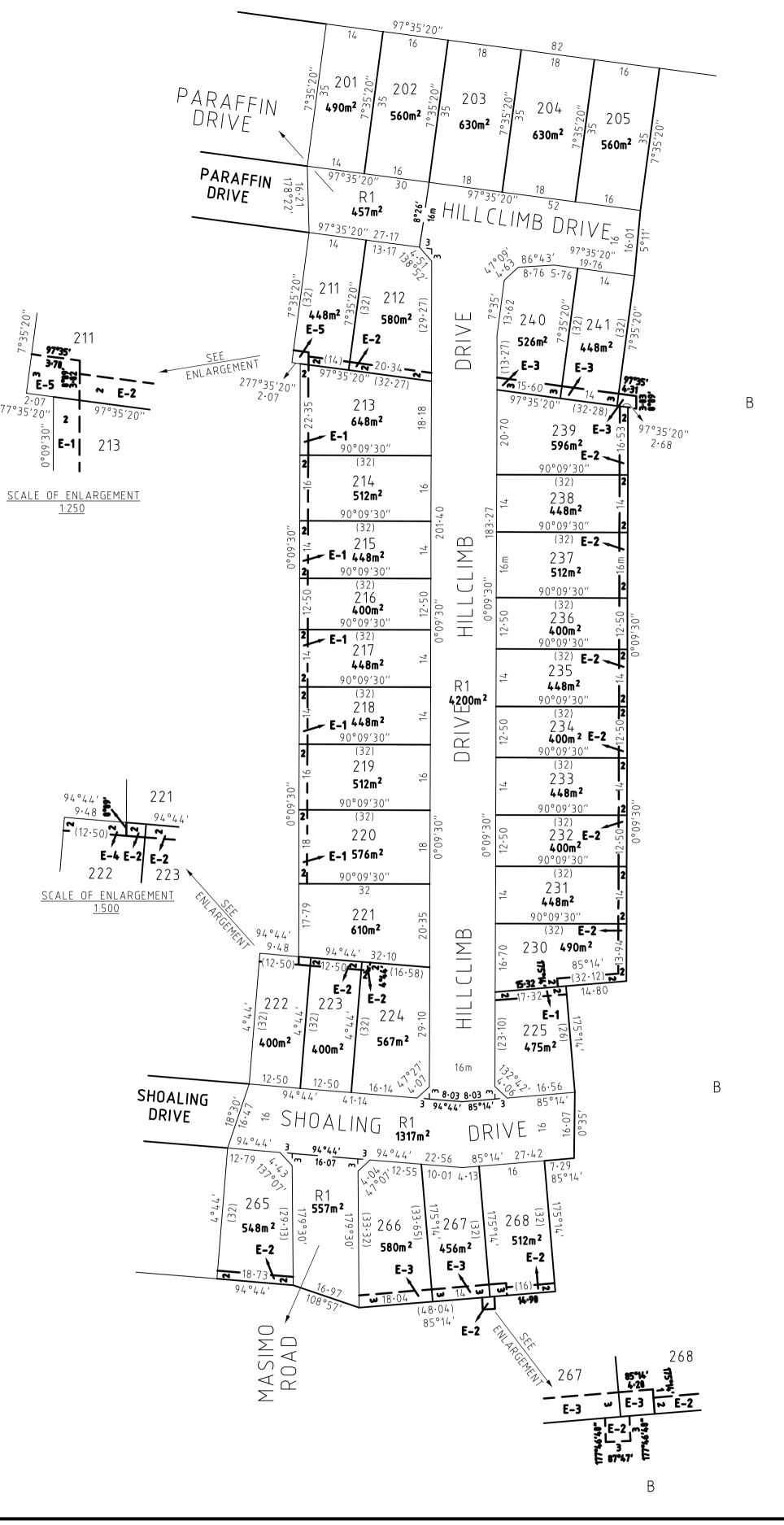
Stage 2A City of Greater Geelong Roadworks and Drainage Standard Details

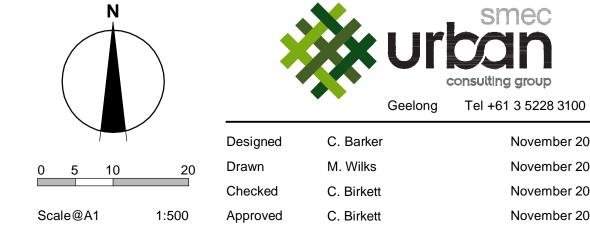
Drawing No. 0250EHL-02A-22 Sheet No. 22 of 23

Rev B

277°35'20'''

Z 0

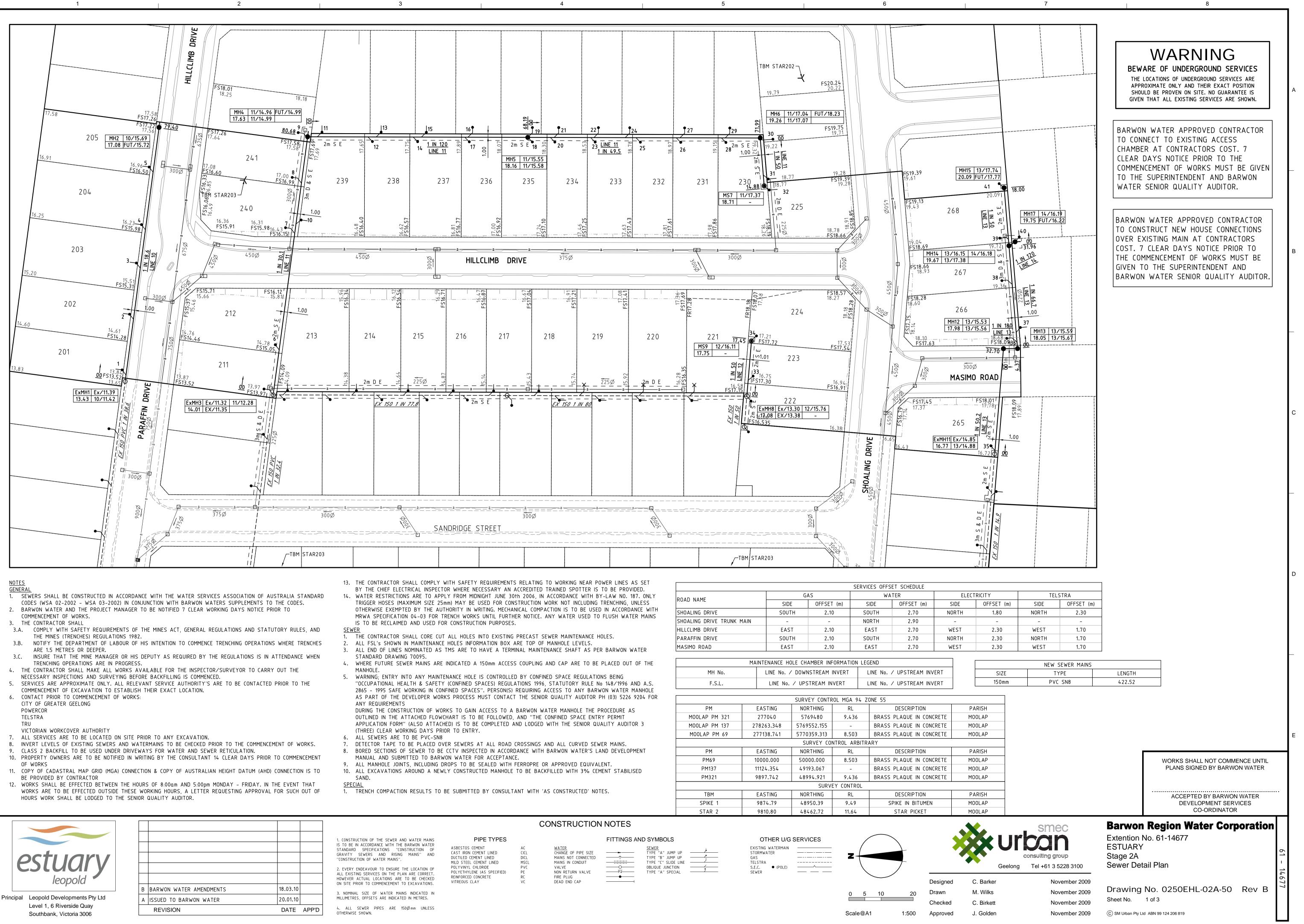

6


MGA

1		
estuary		
CSCUCITY		
leopold		
*	В	COUNC
Principal Leopold Developments Pty Ltd	Α	ISSUEI

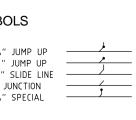
Leopold Developments Pty Ltd
Level 1, 6 Riverside Quay
Southbank, Victoria 3006

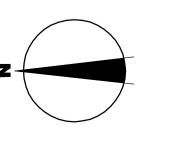
В	COUNCIL AMENDMENTS	18.03.10	
А	ISSUED TO COUNCIL	20.01.10	
R	EVISION	DATE	APP'D

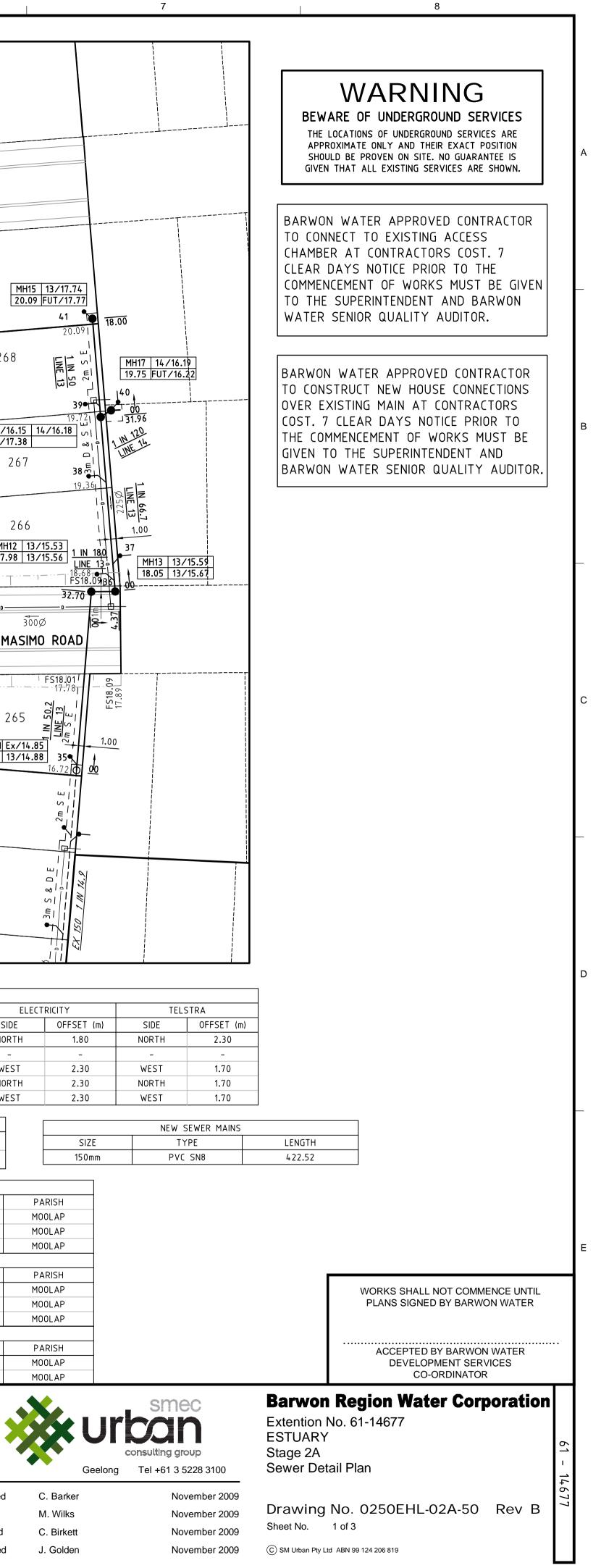

November 2009 November 2009 November 2009 November 2009

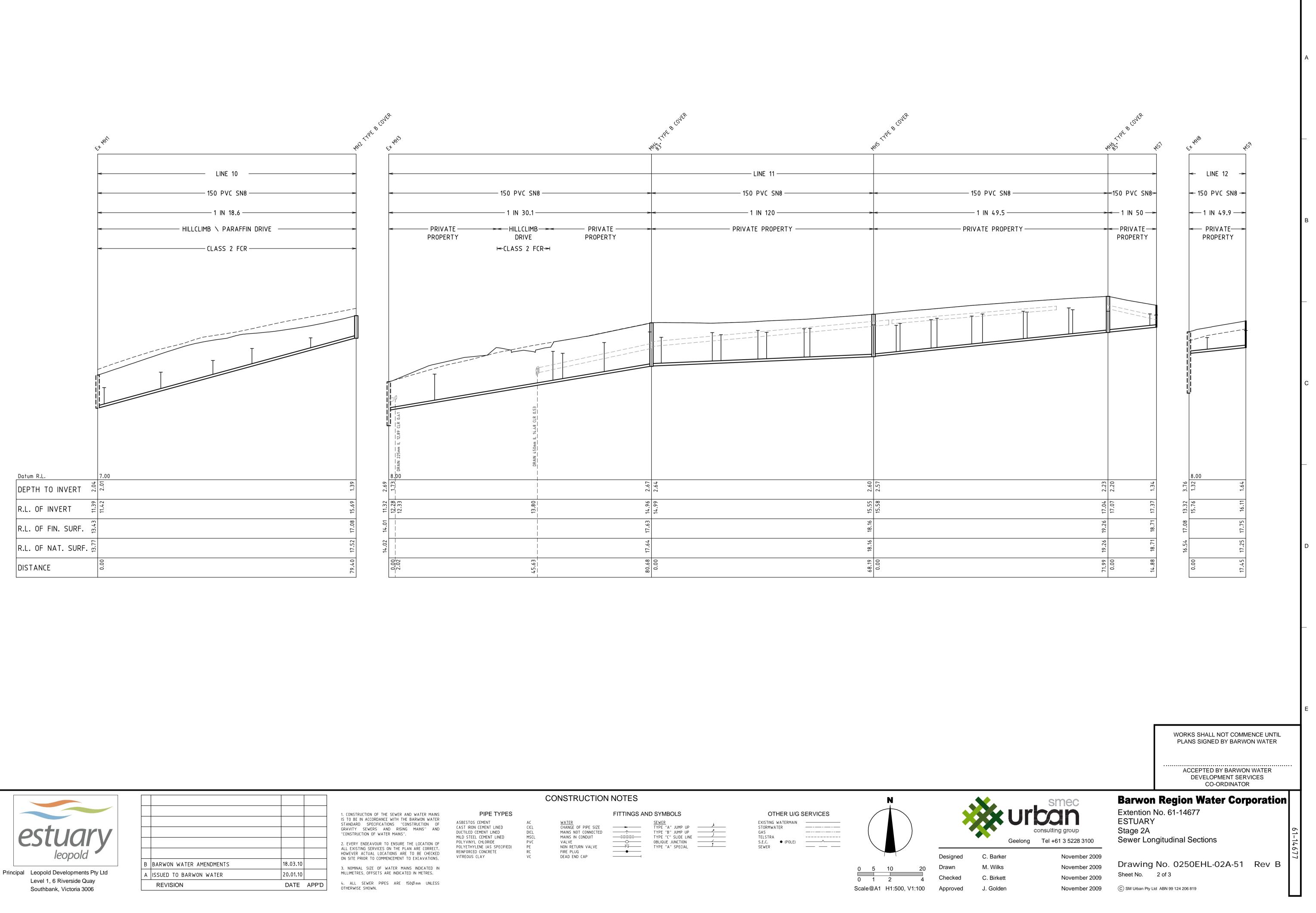
ESTUARY

Stage 2A City of Greater Geelong Roadworks and Drainage Subdivision Setout Plan

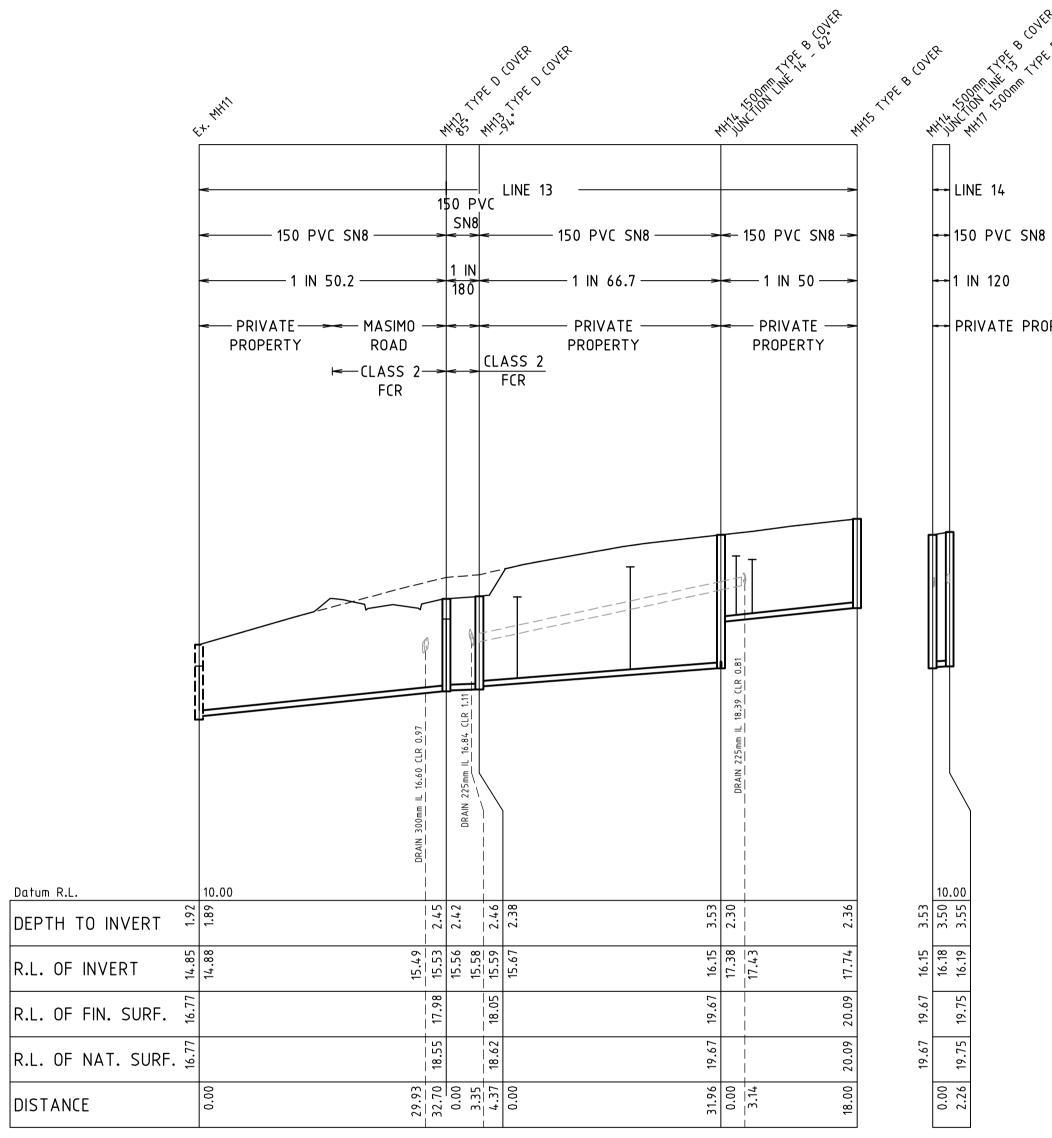

Drawing No. 0250EHL-02A-23 Sheet No. 23 of 23


Rev B





В	BARWON WATER AMENDMENTS	18.03.10	
А	ISSUED TO BARWON WATER	20.01.10	
	REVISION	DATE	APP'D



estuary leopold	

В	BARWON WATER AMENDMENTS	18.03.10	
А	ISSUED TO BARWON WATER	20.01.10	
	REVISION	DATE	APP'C

Principal	Leopold Developments Pty Ltd
	Level 1, 6 Riverside Quay
	Southbank, Victoria 3006

В	BARWON WATER AMENDMENTS	18.03.10	
А	ISSUED TO BARWON WATER	20.01.10	
	REVISION	DATE	APP'D

1. CONSTRUCTION OF THE SEWER AND WATER MAINS IS TO BE IN ACCORDANCE WITH THE BARWON WATER STANDARD SPECIFICATIONS "CONSTRUCTION OF GRAVITY SEWERS AND RISING MAINS" AND "CONSTRUCTION OF WATER MAINS".

2. EVERY ENDEAVOUR TO ENSURE THE LOCATION OF ALL EXISTING SERVICES ON THE PLAN ARE CORRECT. HOWEVER ACTUAL LOCATIONS ARE TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT TO EXCAVATIONS. 3. NOMINAL SIZE OF WATER MAINS INDICATED IN MILLIMETRES, OFFSETS ARE INDICATED IN METRES.

4. ALL SEWER PIPES ARE 150∅mm UNLESS OTHERWISE SHOWN.

ASBESTOS CEMENT CAST IRON CEMENT LINED DUCTILED CEMENT LINED MILD STEEL CEMENT LINED POLYETHYLE (HLORIDE PVC POLYETHYLENE (AS SPECIFIED) PE REINFORCED CONCRETE RC VITREOUS (I AY VITREOUS CLAY

-- PRIVATE PROPERTY

LINE NO.	MANHOLE NO.	HC NO.	LOT	ΝΑΜΕ	CONNECTION TYPE	CHAINAGE
10	MH 1	1	Lot	201	A	2.00
10	MH 1	2	Lot	202	А	19.40
10	MH 1	3	Lot	203	А	35.40
10	MH 1	4	Lot	204	А	47.40
10	MH 1	5	Lot	205	А	65.40
11	MH 3	6	Lot	2 1 2	В	14.07
11	MH 3	7	Lot	240	A Special	50.42
11	MH 3	8	Lot	2 4 1	A Special	66.14
11	MH4	9	Lot	242	A Special	0.00
11	MH 3	10	Lot	239	A	53.42
11	MH4	11	Lot	244	A	3.02
11	MH4	12	Lot	2 3 8	В	18.66
11	MH4	13	Lot	2 4 5	A	21.35
11	MH4	14	Lot	237	В	32.66
11	MH4	15	Lot	246	А	35.35
11	MH4	16	Lot	247	A Special	49.66
11	MH4	17	Lot	236	В	48.66
11	MH 5	18	Lot	2 3 5	В	0.00
11	MH 5	19	Lot	248	A Special	0.00
11	MH 5	20	Lot	234	В	6.97
11	MH 5	21	Lot	249	A Special	8.16
11	MH 5	22	Lot	250	A Special	20.47
11	MH 5	23	Lot	233	В	19.47
11	MH 5	24	Lot	2 5 1	A Special	30.16
11	MH 5	2 5	Lot	2 3 2	В	33.47
11	MH 5	26	Lot	2 3 1	В	45.97
11	MH 5	27	Lot	252	A Special	47.16
11	MH5	28		230	В	59.97
11	MH5	29	Lot	253	A	61.15
11	MS7	30	Lot	227	A	0.00
11	MH 6	31	Lot	226	A Special	12.88
11	MH6	32	Lot	2 2 5	A Special	0.00
12	MH 8	33	Lot	223	В	5.58
12	MS9	34	Lot		В	0.00
13	MH 1 1	35	Lot		B	1.00
13	MH 1 2	36	Lot	266	A Special	0.00
13	MH 1 3	37	Fut	Lot		5.01
13	MH 1 3	38	Lot	267	A Special	19.96
13	MH 1 4	39	Lot	268	A Special	2.00
13	MH 1 7	40		Lot	A	0.00
13	MH 5 4	41	Fut	LOT	В	0.00

PIPE TYPES Δſ CICL DICL MSCL

FITTINGS AND SYMBOLS

 WATER
 SEWER

 CHANGE OF PIPE SIZE
 TYPE "A" JUMP UP

 MAINS NOT CONNECTED
 TYPE "B" JUMP UP

 MAINS IN CONDUIT
 TYPE "C" SLIDE LINE

 VALVE
 O

 NON RETURN VALVE
 O

 FIRE PLUG
 TYPE "A" SPECIAL

OTHER U/G SERVICES EXISTING WATERMAIN

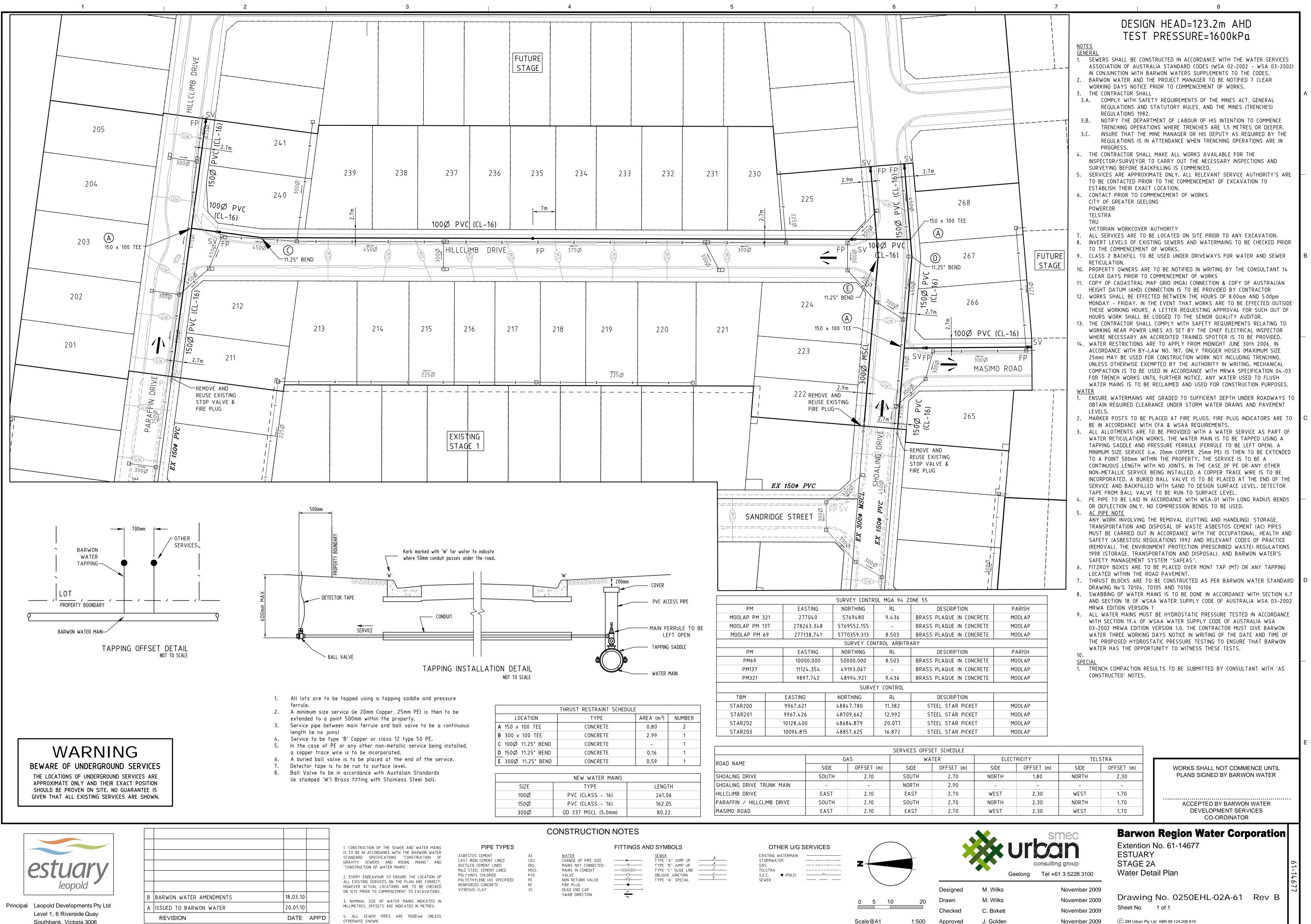
GAS ______ GLSTRA ______ S.E.C. ● (POLE) _____ SEWER _____

0 5 10

20

4

C. Barkei Designed Drawn M. Wilks Checked C. Birkett J. Golder


0 1 2 Scale@A1 H1:500, V1:100 Approved

СНА	INAGE	IL SEWER II		R A N C H E I G H T		
	$2 \cdot 00$ $19 \cdot 40$ $35 \cdot 40$ $47 \cdot 40$ $65 \cdot 40$ $14 \cdot 07$ $50 \cdot 42$ $66 \cdot 14$ $03 \cdot 42$ $18 \cdot 66$ $21 \cdot 35$ $32 \cdot 66$ $31 \cdot 42$ $18 \cdot 66$ $0 \cdot 00$ $0 \cdot 00$ $6 \cdot 97$ $8 \cdot 16$ $20 \cdot 47$ $19 \cdot 47$ $30 \cdot 47$ $19 \cdot 47$ $30 \cdot 47$ $47 \cdot 16$ $59 \cdot 97$ $61 \cdot 15$ $0 \cdot 00$ $5 \cdot 58$ $0 \cdot 00$ $1 \cdot 00$ $5 \cdot 58$ $0 \cdot 00$ $1 \cdot 00$ $5 \cdot 01$ $19 \cdot 96$ $2 \cdot 00$ $0 \cdot 00$ $5 \cdot 01$	11.50 12.45 13.32 13.97 14.96 12.74 13.96 14.96 14.96 14.96 14.96 15.14 15.16 15.26 15.28 15.28 15.55 15.55 15.72 15.99 15.94 16.19 16.26 16.52 16.54 16.80 16.83 17.04 17.33 17.37 15.87 16.11 14.89 15.53 15.74 17.415 17.74	12.65 13.60 14.32 15.06 15.71 14.49 15.89 16.43 17.07 15.77 16.75 17.03 16.91 17.17 17.05 17.27 17.30 17.51 17.48 17.48 17.60 17.83 17.91 18.05 18.17 18.34 18.29 18.55 18.44 18.35 18.44 18.35 18.44 18.35 18.44 18.35 18.18 18.12 16.73 17.16 16.73 17.16 16.73 17.76 18.03 18.82 19.12 19.02 19.50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
					WORKS SHALL NOT COMMENCE UNTIL PLANS SIGNED BY BARWON WATER ACCEPTED BY BARWON WATER DEVELOPMENT SERVICES CO-ORDINATOR	
		Geelong Tel	+61 3 5228 3100	Extention ESTUARY Stage 2A	No. 61 - 14677	
ned 1 xed ved	C. Barke M. Wilks C. Birke J. Golde	s :tt	November 2009 November 2009 November 2009 November 2009	Sheet No.	No. 0250EHL-02A-52 Rev B 3 of 3 .td ABN 99 124 206 819	
				C SM Urban Pty L	td ABN 99 124 206 819	

D

F

7

Principal	Leopold Developments Pty Lto
	Level 1, 6 Riverside Quay
	Southbank, Victoria 3006

BARWON WATER AMENDMENTS	18.03.10	
ISSUED TO BARWON WATER	20.01.10	
REVISION	DATE	APP'D
	BARWON WATER AMENDMENTS ISSUED TO BARWON WATER REVISION	ISSUED TO BARWON WATER 20.01.10

Approved